ORACLE

Oracle Banking Digital

Experience

UX Extensibility Toolkit
Release 19.2.0.0.0

Part No. F25153-01

December 2019

Preface

User Interface Workbench

December 2019

Oracle Financial Services Software Limited
Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001
www.oracle.com/financialservices/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer software” pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use
this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

User Interface Workbench ii

http://www.oracle.com/financialservices/

Preface

Table of Contents

R o == U = ST PP 5
1.1 [C=Ta o =T o I U o 1= o ot PP PP PP PRR 5
1.2 Documentation ACCESSIDIIILYuviiiiiiiiiiiii e 5
1.3 ACCESS 10 OraClE SUPPOIT .. .eeieeiiiiiie ittt et e e st e e e sk b e e e e s abb et e e abbeeeesbneeeean 5
14 SHTUCTUIE ...ttt e e e s et e e e e e et e ettt e e e e e s e b e ettt e e e s e e b r e et e e e e e s aannnne s 5
1.5 Related INFOrMAtION SOUICES.ciuuiiieiiiii ettt ettt et et e et e e s anbne e e s anneeas 5

2. User Interface WOTKDENCHii e 6

3. UL Workbench Manual BUildoeeiiiiiiiiiiie et 8

3. UL workbencCh iNSTaAllAtIONeoiiiiiiieii et 9

A, LAYOUL SEIECTION ..ttt ettt ettt e e sttt e e st bt e e e sabe et e e abb et e e abbeeeeabreeeeans 10

T o] (o [T O =T 14 [0] IO P PO PP U PP PPP PP 11

6. REST API SEIECTION ..ottt et e e e st e e s e e e s nrr e e e nnes 15

7. REST API CONTIGUIALION .iiiiiiiiieiiiiie ettt et e e e s e e s e e e e e e e enes 19

8. ChAIN REST APIS ..ttt ettt e et e e e e h bt e e e et bt e e e et bt e e s aaba e e e e nees 21

9. DESIGN COMPOMENT..ciiiiitiiie ittt ettt ettt e e ettt e e st b et e e e aa b et e e e asbb e e e e aabe e e e e anbb e e e e anbbeeeeanbneeeenens 27

10. E Y= T = Lo T L= 0T g1 o To T = 11 KNS 44

11. AVAITADIE ATIITDULES ..o e 76
I T = o T PO OPPPR 76
T2 VAIUE ettt h et e et e e b e e e ab b e e e nnaees 81
LI T O T o o] £ PO OPPPPT 91
11,4 Value change NANIEN: ...ttt e as 96
LS T £ 11 To F= 1110 £ £ PP PP 101
T1.6 ReQUIFE FIEld: ...ttt e e eb e e e 106
L A Yo [0 N o To T L PP PTPPP 107
11.8 Add CUSIOM ALIDULES: ...ttt e e e 109
11,9 CoNAItiONA] FIEIA:oiiieiiiei e e e e 111
Ry O TR €1 o O RPTRP 116
11.11 Y= [=Tol A= T (ol g [0 g1 o= ST PEPUT PP 119
P Yo (o I (o] 1 F= Ui (] O PP PP P PP PPPPPPN 123
T1A3 SEIECTE SIZE: ettt 127
1114 ENter IMage Path: e e e e s 128
T1A5 ENEEr INIAIS .. e e e 129
L T S T =T o A I8 o RPN 129

User Interface Workbench iii

11.17
11.18
11.19
11.20
11.21
11.22
11.23
11.24
11.25
11.26
11.27
11.28
11.29
11.30
11.31
11.32
11.33
11.34
11.35
11.36
11.37
11.38

Preface

SEIECHON MOUE: ...ttt e st e st e e et e e e et r e e e e snb e e e e e e 131
Enter Allowed File EXIENSIONS:ciuiiiiiiiiii ettt 132
e aE= Vo TR 1N (ol PP PR TP PPPTPPRPTP 132
Enter Minimum LENGEN: ...t 133
Enter Maximum Length: ... e 134
10T S (= o PP PPPPPPPPIN 134
SOUICE VANADIE: ...t e s r e 135
Lo I L] o1 L= OO PPPPUPR PRSPPI 136
LR aTo =T =T 5 PP PUPP PRSPPI 136
=T 11 = V(o] o PRSP 137
10 =T PP PPPPR PP 141
5 TP PRTRPRPRPRPRTN 143
ENter MENU JAUNCRET: ..ottt e e 143
107011111 01 K OO T PP P PP OPPPPON 144
YT £ 0o (=T PSP PP P PP PPPPPO 148
AT TADEL ... 149
JLIE= 0 18 o[T TP PP PP P PP P PP PP PP PP PRTTPRTRTTI 150
BINAING SOUICE: ...ttt ettt e e e et e s sk bt e e e nabr e e e e nbeeeeenene 151
ENTEI TOWS L. 154
SlECIEU SIEP ..o 155
REST API Chain and HOOK FUNCHIONuviiiiiiiieiiiiie e 157
Select Type Of CONLAINET.........cooviiiiiiee e 160

User Interface Workbench iv

Preface

1. Preface
1.1 Intended Audience

This document is intended for the following audience:
e Customers

e Partners

1.2 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at http://www.oracle.com/pls/topic/lookup?ctx=accandid=docacc.

1.3 Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=accandid=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=accandid=trs if you are hearing impaired.

1.4 Structure

This manual is organized into the following categories:

Preface gives information on the intended audience. It also describes the overall structure of the User
Manual.

The subsequent chapters describes following details:

e Configuration / Installation.

1.5 Related Information Sources

For more information on Oracle Banking Digital Experience Release 19.2.0.0.0, refer to the following
documents:

e Oracle Banking Digital Experience Licensing Guide

User Interface Workbench 5

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

User Interface Workbench

User Interface Workbench

User Interface Workbench is a development tool to design the User Interface of an Application using
APIs to fetch data, enabling communication of one screen with another and generating screens to be
displayed to the end user. This tool aims at minimizing developers’ efforts and time by generating the
working screens automatically with minimal user input.

The tool also enables the developers to make the changes in the existing screens created by them or
provided out of box, which are designed using the Ul Workbench tool.

Components:

The screens created consist of the following components:

Template: It decides visual representation of data on the front-end

Model: It is responsible for fetching data from REST APIs

Bindings: It consists of logic for processing the data fetched from the APIs
Resource Bundle: It comprises of strings which are to be displayed on the screen
Hooks: It comprises of user provided logic.

Metadata: It consists of summarized information, which can generate all the above mentioned
artefacts.

Pre-requisites:

Basic knowledge of Swagger. (To know more about swagger refer https://swagger.io/)
Basic knowledge of JavaScript, Knockout Js
Basic knowledge of Oracle JET

Basic knowledge of Sass

Workflow:

The process to create the screen ready to be used by the user / customer is as follows:

e

Install UI
Workbench

Select/Create
Screen Layout

Developer

1. Install Ul Workbench: The tool can be easily installed simply by running the setup file.

2. Select/Create Screen Layout: User can select one of the predefined screen layouts according to

Create Folder
(Screen Type &
Information)

Design
Component

Configure REST
APls

Select REST
APIs

his requirement

User Interface Workbench

https://swagger.io/

User Interface Workbench

3. Create Folder(Screen Information): User has to provide basic screen details like the name of
the screen and the type of the screen e.g. (transaction, inquiry, and widget)

4. Select REST APIs: User can select multiple REST APIs which will be needed for fetching
required information to display on the screen.

5. Screen Designing: User can design how the screen content will be displayed by using the form
elements (e.g. Input Box, Text Area) available in the tool. User can drag and drop these elements
and design the screen as per requirement

User Interface Workbench 7

Ul Workbench Manual Build
3. Ul Workbench Manual Build

In the project directory, place folders obdx-ui-workbench-core and obdx-ui-workbench-gui side by
side.

Follow the steps mentioned below to setup your environment for build.

1. Open terminal inside obdx-ui-workbench-core and perform npm install to setup the workspace
and then execute npm run build to build the core.

2.0pen terminal inside obdx-ui-workbench-gui and perform npm install and then
npm link ../obdx-ui-workbench-core. This will locally install the core package to GUI project.

3.Run npm run build to create executables for macOS, Windows and Linux.
Please note that executables for Windows can only be created on Windows setup and code signing
for macOS applications can only be done on macOS operating system. To create executables for
Windows and macOS on Linux machine, use Wine and Mono on Linux. For more details you can
refer to https://www.electron.build/

Alternatively, you can use docker to simplify the operations as follows and create Windows &
macOS builds on Linux by running the following command in obdx-ui-workbench-gui folder root:

docker run —-—rm -ti
--env ELECTRON_ CACHE="/root/.cache/electron" \
-—env ELECTRON_ BUILDER CACHE="/root/.cache/electron-builder" \
-v ${PWD}:/project \
-v ~/.cache/electron:/root/.cache/electron \
-v ~/.cache/electron-builder:/root/.cache/electron-builder \

electronuserland/builder:wine-mono /bin/bash -c "npm run build”

4. The artifacts will be available inside uiworkbench/ directory.

User Interface Workbench 8

https://www.electron.build/

Ul workbench installation

3. Ul workbench installation

As a first step, user should download the Ul Workbench setup from the Oracle Software Delivery
Cloud portal. Once the setup is downloaded, double click to install the tool.

After installation, user would be directed to the following Landing Page. User is expected to provide
the URL where the swagger document of the RESTful APIs are hosted.

To know more about swagger refer https://swagger.io/

Swagger version (By default it is v1)
Directory path : <OBDX codebase location>/core/channel

Provide these details at the time of installation. The path can be changed anytime later by clicking on
settings. Please note: Every time the path is changed, data is lost.

U/

Welcome to Ul workbench
A developer's tool that helps in building complex screens for your application in just few steps

Swagger URL
http:/mum00chx:3333/swagger/json/openapi

Swagger Version

vi

Select Folder Path
D:\core\channel]

The folder path is where your component would be saved

Copyright © 2018 Oracle and/or its affiliates. All rights reserved

User Interface Workbench 9

https://swagger.io/

Layout Selection

4. Layout Selection

Next step is to select the screen layout. The tool offers five pre-defined templates, which will decide
the layout of the screen that the user wants to create. The user can select any of these layout from
the list provided or can create a custom layout in case the desired layout is not found in the
mentioned list. To know the steps to create the custom layout Please refer Grid section.

_
3

Layout Selection

Select layout

Single Column Horizental Double Column Horizontal Single Calurmn Verteal Deuble Column Verscal

Three Cohsma Vertical

E.g. incase if user select the following layout, the label and value fields will be vertically aligned and in
a single column.

oo 0011

-— Balance : £099,999,019,999.00

Delivery Location

® Zranch hear e My Address

Single Column Vertical

In case the user wants to change the layout once, he has moved on to the next step, he can navigate
to this step by clicking back button at the bottom of the screen. Layout can be changed at any given
point of time during the process of screen creation.

User Interface Workbench 10

Folder Creation

5. Folder Creation

As a part of next step, following screen is displayed to the user to create the new folder. User is
expected to furnish following information.

. Module Name:

Module is a category of the screen the user are creating, for e.g. a fund-transfer screen would be
of category Payments. So in this case, the module name would be payments. Module consists of
various components, which contains the artefacts of the screen the user wants to generate.

e Component Name:

Component name would be the type of screen e.g. Funds transfer, Cheque Book Request,
Letter of Credit Initiation, Bill Payment, New Deposit etc.

e Component Type:

Component type is the type screen layout the user wants to be displayed. User can select from
the options as Individual page Transaction Page or a Widget. (Explained in the detail below)

New Component = 8

©) .
LEYUU‘ Selection Folder Creation REST API Selection REST API liinﬂgu'n[\:}n Design Companent

Create a new module and component

Module Name Component Name

Type module name Type component name
Component Type

Know More

Following are the different component types and the examples where these are used.

e Individual Page:

Individual page is a stand-alone page that consists of the detailed information for the Selected
transaction/component e.g. Account Details (Component) in a standalone page shows the
various Balances, transactions and other information of the selected accounts.

User Interface Workbench 11

Folder Creation

Basics
Customer ID
*GOE

Holding Pattern
Single

IWode of Operation
Single

Branch

AT3 FLEXCUBE UNIVERSAL BANK, Needal Street, London, GREAT BRITAIN
Status

Active
MNomination

Not Registered
Sweep-in Provider
No

° Flows:

Flows consists of pre-defined multiple pages in accordance to OBDX Ul framework. For e.g. A
transaction where the customer or user enters information asked on the screen, reviews the
same and submit it for further processing. It consists of multiple screens.

Account Number

0000000000166 - John 5 e
Balance : £347,997.22

Transfer From

XXKXXXXXXXXX0170 '
Balance : €345,975.51

Amount

GBP v £1,000.00

View Limits
Transfer When

@ Now Later
Note
payment for credit card

57 Characters Left

User Interface Workbench 12

Folder Creation

@ review
You initiated a request to add Peer to Peer Payee. Please review details before you confirm!
Payee Name
John Smith

Email / Mobile
abc@xyz.com

Nickname
Johnny

& CONFIRMATION
Request submitted successfully,
Ref Mumiber
2019030001098995
Host

19326155682700003

UETR
12979072-717d-4858-8047-2bc38bd61 04e

Stava J €120.00

\ it Wumbe ant Ty
234234 Intemational
Bank Ditail: Pa t Dietail:
DEUTDEFFXXX payment

DEUTSCHE BANK AG
TAUNUSANLAGE 12

ansfer | nater Wi
MEE 0] 68 30 Jan 2019

Swi

401 Island Parkway,
Redwood Shores,
New York

UNITED STATES

What would you like to do next?

In case of such scenario, one must select component type as FLOW.

Types of FLOW supported are
1. CREATE:

This is an n-step flow, which is similar to a transaction. The only difference is the initiation page can
be any number of pages as per the requirement and not only one. For e.g. first page can comprise of
primary details of a customer e.g. name, surname and second page can consist of additional
information like address. Review and confirmation page will each consist of a single page only.

User Interface Workbench 13

Folder Creation

Once the flow type is selected as CREATE, additional details are required to be filled such as
e Flow name : The name will be the identifier of the entire flow
o Number of Stages : The number of pages before the review screen appears in the flow
e Stages navigation display: The type of navigation control to navigate between the pages
e Confirmation Template: Type of layout for confirmation screen

e Show summary : if summary is to be shown about the progress of the form filled and
continue where the user had left the last time, the switch can be toggled to YES

. Widget -

Widget is a small section on the screen especially on the Dashboard that displays commonly
used functions or important information in a summarized form. The component generated of
this type will be shown on the dashboard.

My Net Worth | Have | Owe

Current & Savings

€13,438,714.46

| Have Term Deposit
£€13,438,714.46 £€0.00
Recurring Deposit
£€0.00

User Interface Workbench 14

User Interface Workbench

REST API Selection

REST API Selection

In this step, the user has to select the REST APIs to enable the functioning of the elements on the
screen. The dropdown will contain all the REST APIs mentioned in the swagger document hosted on

the URL which user had specified in the landing page.

_

@ ©) 4 ; :

Layout Selection Folder Creation REST API Selection REST API Configuration Design Component Design Review Component

Select REST API for the component

REST API services Manage Swagger URLs

No items to display.

=)

In case, the user needs REST APIs whose documentation is hosted on other URLs apart from the
ones the user had mentioned earlier, the user can add them by selecting manage Swagger URLs

link.

On clicking the link, a panel will open on the left side. By default, it will contain the URL and the
version, the user had specified during installation. User can change this URL or can add multiple
URLSs by clicking on ‘Add URL’ text link, depending upon the requirements.

New Component %

Manage Swagger URLs X @) 4 5 6

Design Review Component

i Folder Creation REST API Selection REST API Configuration Design Component
Enter swagger URL ®

Enter swagger URL

Enter version Select REST API for the component

Enter version

AddURL | REST API services Manage Swagger URLs

No items to display.

15

REST API Selection

Once the user has entered the URLs he can save the details by clicking the save button. After the
dialog box closes, all the REST APIs will be consolidated and are available in the dropdown

User can select multiple RESTs as per requirement. All the selected RESTs are shown in the list view
form.

Select REST API for the component

User can configure the REST properties by clicking on the edit icon.

Select REST API for the component

On clicking on the edit button, a panel will open on right, which has three configuration options.

Parameters are the options that the user can pass with the endpoint (such as specifying the response
format or the amount returned) to influence the response.

User Interface Workbench 16

REST API Selection

e Required Parameters:

They are also known as path parameters. These parameters are part of the REST URL
written within curly braces. E.g. /accessPoints/ {accessPointld}.Here accessPointld is the
required parameter.

e Optional Parameters:

They are also known as query parameters. These parameters are part of the REST URL
written at the end of the URL followed by? Symbol. E.g. /accessPoints? NoOfpoints=3. Here
NoOfPoints is an optional parameter.

The value of these parameters can be set by two ways.
1. Current component sets the value.

2. Value is passed to the current component from the previous component.
In case the parameter values are being passed from the previous component, the variable
name has to be mentioned in this pane
The current parameter value is set in later steps, refer Value attribute.

e Configurations:
The GET REST API can be used for two purposes.
1. To fetch details
2. To download a file

If user wants to use GET REST API as a download service, user can enable the switch
named as 'Use as download Service' in configurations section

: : Edit REST API Parameters X

od Parameters

Select REST API for the component

about getvi x | faccessPoints/{accessPointid) get v x s

User Interface Workbench 17

REST API Selection

In case of FLOW, user can select RESTs for each step.

Select REST API for the component

Manage Swagger URLS

~ Review

~ Final REST

The final REST dropdown value should consist of the REST that will be fired once the user has
confirmed the details and which will make the concerned transaction.

18

User Interface Workbench

REST API Configuration

7. REST API Configuration

In this step, the user can configure how the selected REST APIs will be called when the screen is
loaded. There are two sections in this step.

Chain selected REST APIs
There are 3 ways how REST APIs can be called:

= Independent

If all the selected REST APIs are to be called irrespective of any dependency on other
APIs, then the user has to select the NO option.

= Sequential

If a REST API calling is dependent on the response of other REST APIs then such case
is known as sequential manner. For e.g. A REST API fetching details of cities in a
country is dependent on the response of API fetching the list of countries. If REST APIs
are to be called in such a manner, select the option ‘Yes’.

On selecting the ‘Yes’ option, a panel appears on the left having list of selected REST
APIs

= Parallel

If REST APIs are to be called together and the combined response of these APIs are
needed then they are to be called parallelly. If REST APIs are to be called in such a
manner, select the option ‘Yes’.

On selecting the ‘Yes’ option, a panel appears on the left having list of selected REST
APls

New Component =

(.
© © o () @ ;
Layout Selection Folder Creation REST API Selection REST API Confi Design Ct Design Review Component

REST API Configuration

Chain selected REST API Yes .

What s chaining?

Execute REST APl on component load Yes .

How to chain Rests, refer Chain RESTS.

In case of FLOW, user can configure RESTSs for each step.

User Interface Workbench 19

REST API Configuration

REST API Configuration

Chain selected REST API
What is chaining?

~ Stage 1
~ Stage 2

" Review

User Interface Workbench 20

Chain REST APIs

8. Chain REST APIs

User is expected to chain the REST APIs, if the REST APIs are to be called parallel or sequentially.
To chain the APIs, the user must select ‘Yes’ option in the previous screen. Once the user selects
‘Yes’, a panel appears on the left having list of selected REST APIs.

To start chaining, user needs to drag the APIs and drop it in the chaining section shown in the middle
section of the screen.

v « (4]

Folger Creation REST API Selection

REST API Configuration

«-

Once the user has dropped the REST APIs in the middle section, a right panel gets opened where
user has to provide information about the REST type and if the RESTs are parallel independent or
dependent.

Some common terms used in chaining are:
REST Type:

e Parent — If this option is selected then, every service call flow needs a parent rest, which will be
called first.

e Child - If this option is selected then, service to be called after parent call finishes.

Is this REST Parallel Independent or Parallel Dependent?

e Parallel Independent — On selecting this option, service calls can be fired independently.

e Parallel Dependent — On selecting this option, service calls logic, which depend on response of
an immediate parallel service call, those immediate service calls needs to be parallel dependent

User Interface Workbench 21

Chain REST APIs

The chaining structure is similar to tree structure. The top most node would be parent and the other

nodes would be child nodes.

P

/enumerations/country get v1

C

/enumerations/country/{countryCode}/state get v1

If user selects REST type as Parent then the node with letter P will be generated.

P

/enumerations/country get vi

If user selects REST type as Child then the node with letter C will be generated.

C

/enumerations/country/{countryCode}/state get v1

Consider an example if two REST APIs are to be called in a sequential manner.

The first API to be called will be declared as Parent and since no other API is to be called along with

this API, it will be parallel independent.

User Interface Workbench

22

Chain REST APIs

x REST AP| Detalls X

@ @ 0

Folder Creation REST APl Selection REST AP1 Configuration

REST API Configuration

The second API which is to be called after the response of the first API is received, will be declared
as a child and parallel independent

Selected REST API X REST API Detalls X

E 2) o

Folder Creation REST API Selection

REST API Configuration

- -

To establish the linkage between the parent and its child nodes and distinguish them from each other,
the connection has to be made. To make a connection, drag the child REST from the chaining
section, and drop it on the Parent REST and then drag the child node down, the connection will be
made.

User Interface Workbench 23

Chain REST APIs

Selected REST API *x

© 1% 4]

Foider Creation REST 4P| Setection

REST API Configuration

- -

Jabout get v1

/enumerations/country get vl

C

faccessPoints/{accessPointid] get v1

c

Jenumerations/country/(countryCode]/state get vi

The connection is only to be established if the services are to be called in sequential manner.

In case, all the services are to be called together and the wait till response of each service has been
received, connection will be not established as they all act as parent nodes. In such case, all REST
APIs will be configured as parent node and will be parallel dependent since they will have to wait for
the response of the selected APIs.

If out of the selected RESTSs, some of them are sequential or parallel Dependent and rest of them are
parallel Independent, the chaining is still to be performed. To declare a REST to be independent of
other rests, select the rest type as Parent and Parallel independent and do not make any connections
with those RESTSs. Incase all the REST APIs are independent of each other then there is no need of
chaining.

User Interface Workbench 24

Chain REST APIs

If user wants to call the REST APIs as soon as the screen loads, the option ‘Yes’ needs to be
selected.

< L]

REST API Selection

Layout Selection Folger Creation

REST API Configuration

Once the yes option is selected, the REST Chains will be shown to user. In case of independent
RESTSs their name will appear.

fabout get v1

faccessPoints/{accessPointld} get vi

If there is a sequential rest then it will be displayed as

Execute REST APl on component load - No

/about get vi==/accessPoints/{accessPointld} get vi
If there is a parallel dependent chain then it will be displayed with their names together
fabout get v1/accessPoints/{accessPointid}

User can select which REST chains he wants to call when the screen loads. Once he has selected
the chains, user needs to click on generate init function to generate the code to fire the services on

the screen load.

User Interface Workbench 25

Chain REST APIs

Generate Init Function

Once the function is generated user can click on Edit Init Function link to edit the code to perform
desired actions.

Edit Init Function

1 //The variables declared here will be binded in self eg self.varName=ko.observable
2 function init(bindingContext, rootParams) {

3 self = bindingContext;

4 params = rootParams;

s Promise.all([aboutgetCall(), accessPointsaccessPointIdgetCall(self.accessPoints.
6

7 // result of /about /accessPoints/{accessPointId} fired together

¢ r
9 1

16

11 return true;

12

- cance!

User Interface Workbench 26

Design Component

9. Design Component

This step enables the user to design how the contents of the screen are to be displayed. User can
make use of available form elements e.g. Input Text, Button etc. Each element can further be
configured, placed and styled by the user as per the screen requirement.

If the type of component is FLOW, the name of the stage changes to Design Stage 1, Design Stage
2, depending on the number of stages

Available Components x

[DatePicke Design Component

The following information is captured on this screen.

User Interface Workbench 27

Design Component

e Component Header

The text entered in this field will be displayed as the Page Title. E.g. Cheque Book Request,
Loan Repayment etc.

e Validation Tracker ID

The ID provided by the user should be the ID of the element within which the form elements
reside. The tool by default generates this ID. So this is an optional field. However, there may
arise a situation where the user needs to use such an ID. In such case, user can provide
custom ID in this field.

e Component CSS Style

User has the provision to provide custom style sheet (CSS) for the screen he wants to generate
and change the look and feel of the component as per his requirement.

To create custom style sheet, user has to toggle the button to Yes. A CSS Editor button will
appear on the right of the toggle button.

c) @ @ @ o

ayout Ssiection Folaer Creation REST API Seiecton REST API Connguration

Design Component

On this button click, an editor window pops up. This code editor supports Sass(Syntactically
awesome style sheets). User can provide the custom classes in this editor.

User Interface Workbench 28

Design Component

0 User intertace Workhench - o %
Fie viaw

After component creation, Sass file and processed Sass i.e. CSS file will be generated that will
contain user defined style definition written in sass editor.

The next section can be considered as a canvas where user can design the screen contents.

Available Components | Edit Init Function | More
Form

Drag Here

The links in the top right section in the above image are explained below:
e Available Components

On clicking this link, a panel opens on the left side, which contains the Ul elements supported by
the tool.

User Interface Workbench 29

Design Component

U User Intesface Woskbench - & x
Fie_View

Availatia Companents x

+ Foma = = o
@ AncharTag

0 e | - p—— p——— =

& ookt
fp—
4 Do e
51 Pl Peser
B e

1 ot E— PR—
rpr—

Design Component

B e T Vabdalon Trackes ID

Avatatie Compomerts| EdE ot Functien | More

. Edit Init Function

This link opens the editor for writing ‘init function’, which you generated in previous step (REST
API Configuration). After making changes to init function, click save to apply the changes.
Clicking on cancel button will simply discard the changes.

Available Components = Edit Init Function. More

0 User intertace Workhench - o x
Fie Vit

User Interface Workbench 30

° More

On clicking more, context menu is opened that has following options:

= Custom Resource Bundle

Design Component

To add custom entry to the resource bundle file (which contains all the text that will be
displayed on the screen), user can select this option. After selecting this option, editor
window will pop up where user can add the custom entry.

) UserInterfce Workbench
Fie View

@

@)

@ -]

Layout Selection

Component heacer

Vatdation Tracker 10

style

Form

Orag Here

Fokter Creaton

REST API Selection

Design Component

REST API Configuration Design Component

Avasable Components | Edit Init Function | More
Custom ResourceBundle

Component JSON

To add new entry, add key and the resource value inside the braces of ‘const nls’ , as shown in the

picture below:

0 User intertace Workhench
Fie Vit

This resource bundle value can be used in two way in the component

User Interface Workbench

31

Design Component

1. Inside init function: Here resource bundle value can be accessed with code
self.nls.custom_key.

2. Inside html: In normal scenario, tool creates resource bundle for every string attached to
html element. But in special case, this can be simply done by writing
$component.nls.custom_key.

] Component JSON

Selecting this option will open editor window. On creation of component, this JSON file
is created inside the component.

const json={
data: "dummy data”

3 K

To create a screen, first element has to be Page Section (refer Page section doc), which can be
found in framework Components section of left panel.

Available Components X

» Forms
b Controls

4 Framework Components
EZ Account Input

Amount Input
Bank Look Up
(?) Help Panel

> Nav Bar

B Page Section
= Row Control

» Visualizations

To add any element from left panel to form area, either drop it on a particular location or just click on it
to add it as a last element in form area.

After clicking on Page Section option panel on the right will be opened where details for this element
are captured.

User Interface Workbench 32

Design Component

New Component =

Available Components X @ @ @ Page Section X
» Forms Folder Creation REST API Selection REST AP Configuration Basic
4 Controls

= Button Label

55 Button Set Enter Label

Design Component

E Container
], Component Loader Format Label

4 Framework Components Component header Enter component header

E2 Account Input

Hide Page Heading
& Amount Input

@ Amount inpy Validation Tracker ID Validation Tracker D

& Bank Look Up
(@ Help Panel
% NavBar Component css style Yes - Header Template path

[i nter Header Template p
| Page Section Enter Header Template path

Available Components | Edit Init Function | More

Row Control

Form

b Visualizations Advanced
Drag Here
Layout

After filling compulsory fields, click confirm to add element. In case all the required fields are not filled,
error message will be thrown.

For Page Section, only Label element is compulsory. After confirming, Page Section is added to the

form area.
Available Components | Edit Init Function | More
Form
Fal
Header “aw

To make changes to the element, click on edit icon or to remove the element click on delete icon, or
to copy element just below this click on copy icon.

Heading “aa

User can add as many Page Sections as needed in the screen and add form elements to it.

Adding form element to page-section

After adding Page Section, any element, which are present in available element panel can be added
or dropped below it. For example, to add input box click, on available components ->Expand Forms
section ->click on Input Text element

Fill in the required details in the right panel for the element and click confirm. Input element will be
added to the form layout below Page Section.

User Interface Workbench 33

Design Component
Edtt Init Function | More

Form
@3

Header

@B m

Reordering a form element
Added elements inside form area can be re-ordered among themselves. To re-order an element click

and hold the right most drag icon and release at desired position.

ents | Edit Init Function | More

Header r‘" W m
a =R
ate [ER= Qi
Header m r:“] IE
Da [E= R
[Eg= R
Deleting a form element
To delete form element click on delete icon.
Form
Header @Zew
~ N = N |
. “aa
Header Baw
[Ep= |

User Interface Workbench 34

Design Component

Copying a form element

To copy an already present form element in form area, click the copy icon, new copy of the selected
element will added below it, which can again be re-ordered if required.

Form

Header @ @
Nar ENE |
Form
Header “@an
Eal= R}
Eg= R

Editing a form element

To edit an already present form element in form area click the edit icon, a right panel will open where
the details can be updated. After editing, click on confirm to save the changes.

Available Components | Edit Init Function | More
A8 1
Header 8w
Na
nout Text
) @ @ @ Basic
election Folder Creation REST AP Selection I Enfiguration
Design Component
panent heade Page Header
aAlAton Tracker |
Advancad
nponent css style Yes - Layout
A e Components | Cdit Init Function | More
om
T &
Header 6@

Name & A

Creating Component

Once the user is satisfied with the screen design, user can click on the create component button to
generate the component.

User Interface Workbench 35

Design Component

Available Components | Edit Init Function | More

Heading “aw

Name =R

If all the details filled for each form element are valid then component will be generated and a
success message will be displayed in a dialog box stating that the components have been created
successfully.

U User Interfece Warkdsench - 8 %
Fie Vaw

Success

Your Companent has baen created successhully.

Success

Your Component has been created successfully.

Click the OK button or cancel icon to close the pop up. User can make further changes to it and then
update the created component by clicking on ‘Create Component’ button.

In case there is an error in case of component generation, error message will be displayed in a dialog
box.

User Interface Workbench 36

Design Component

O User Interface Workbench - o %
Fie

Error x

Oups! something went wieng. You can Check 1ogs in seflings aption

Error x

Oops! something went wrong. You can check logs in settings option

To find out what errors caused the screen creation failure, click on View Logs option which can be
found in the setting icon on top right corner of the tool in the dark grey panel.

- X

Change folder path

View Logs

n Design Component

User Interface Workbench 37

Design Component

1) User Intesface Workbench - B8 x
Fie Viaw

User can fix the errors and can click on Create Component again. If there are no further errors,
component will be generated and success window will be displayed.

Generated Artefacts
After Creating components following files are generated inside channel path selected by the user;
a. Inside channel_path/component/module_name/component_name:

1. Hooks.js — It contains all the custom code written by user in the Init function or Hook
function.

n

Loader.js — This is the entry file to load the component.

3. Model.js — This file is responsible for communicating with server and transferring data
between component and server.

4. Component_name.js- This file is the view model for the component.
5. Component_name.html — It contains the html code for the designed layout.
6. Component_name.json — Code written in component JSON window is added in this file

7. Component_name.scss - If Component SCSS style was turned on, a SCSS file is created
which contains the code written in SCSS Editor.

8. Component_name.css - If Component CSS style was turned on, the same file is created
which contains code written in CSS Editor.

e.g. Below screenshot refers to a virtual-account-record-list component which is generated using the
tool.

Note: Generated artefacts must not be overwritten manually.

User Interface Workbench 38

Design Component

core * channel » components » file-upload » virtual-account-record-list

Mame Date modified Type

@ hooks.js 25/04/2019 22:48 JavaScript File
loader s 25/04,/2019 22:48 JavaSeript File
model.js 25/04/2019 22:48 JavaScript File
Chrome HTML Do...
JavaSeript File
15/04/2019 22:48 JSOM File

~

& virtual-account-recerd-list.html
virtual-account-record-list.js

b{’ virtual-account-record-list.json

b. Inside channel_path/resources/nls:

1. component_name.js — It contains the language specific values entered by user.

c. Inside channel_path/metadata/module_name/component_name:

1. component_name.json- This is the manifest file for the component.

2. hooks.js- It contains all the custom code written by user in Init function or Hook
function.

E.g. metadata files for Virtual-Account-Record-List component

core » channel » metadata » file-upload » wvirtual-account-record-list

~ Mame Date modified Type
hooks.js 30,/04,/2019 18:16 Javascri
E[r virtual-account-record-list.json 30/04/2019 18:16 JSOM Fi

Editing Component
All the components generated using the tool can be edited by opening the component in the tool.

To edit a component, click on File Explorer icon, available at top left corner of the tool in the grey
panel.

User Interface Workbench 39

Design Component
)] User Interface Workbench
File View

Explorer

4 Metadata

> a

b file-upload
b test-module

b test

All the created components are present under Metadata accordion. To start editing a component,
expand the module_name->component-> click on the component name

Ol User Interdoce Workbench
Eia view

Once the user clicks on the screen name, he will be directed to the screen created during the first
time.

User Interface Workbench

40

Design Component

Change foider path

View Logs

@ ()) &) {5)

Layout Selection Folder Creation REST AP1 Selection REST API Configuration

Design Component

The user can now edit the screen as per requirement and save the changes by clicking on Create
Component Button.

Design Review Component

If the type of component is FLOW, this step is automatically added. It is similar to design component
stage.

In this Stage, a default design is created using the fields which have been designed on the design
stages.

Thus a review page can be generated without user intervention.

§ Ee @ @ @ o) o
A @
A i)
7 B
L] Il
N (= 0]
Ef=-0)

User Interface Workbench 41

Design Component

In case the design does not meet the requirements, user can make changes in the design as needed.
Once the user manipulates the screen, the tool stops automatic design generation. For e.g. If user
adds a field in one of the design pages, then he will have to add that field on the review design step
also.

Confirmation Screen:

Confirmation screen is used to show confirmation of the operation, only in case of flows. User can
design his own confirmation screen. Confirmation template option will be available when Component
Type is Flow & Flow Type is Create.

There will be 2 options available for Confirmation Template:
1. Standard

It is a standard template of confirmation screen, which means user cannot modify or add
any component in this screen. Screen will look like image below.

@ CONFIRMATION
Request submitted successfully.

2019030001098995

1932615582700003

UETR

1a979072-717d-4898-8047-2bc38bd6194e

Steve J €120.00
234234 International
DEUTDEFFXXX payment
DEUTSCHE BANK AG

TAUNUSANLAGE 12

o000 0168 30 Jan 2019

SwWI

401 Island Parkway,
Redwood Shores,

New York
UNITED STATES

What would you like to do next?

2. Animated Page
In this case user can design his own confirmation screen.

One extra step will get added in train after review screen, this will be the design step for
confirmation screen.

Toolkit will generate a page with an animated imaged centrally placed by default.

User Interface Workbench 42

Design Component

User can delete or change this image. He can also add any text of his choice e.g. Thank
You or Transaction Confirmed or can add other components e.g. Buttons, Icons etc.

Confirm folder will get generated in NLS, metadata & in created component folder also.

User Interface Workbench 43

Available Components

10. Available Components

There are four types of components available in this panel.

A) Forms

B) Controls

C) Framework Components
D) Visualization

A) Forms

This section contains the components which are required in designing a form.

For example, a Login form accepts user name and password and validates a user. In the example
below, developer can use Input Text and Input Password element for user name and password
respectively.

Username

orgot Username | Forgot Password

Following is the list of available components under this section.
1. Anchor Tag

Avatar

Check Box

Combo Box

Date Picker

File Picker

Image

Input Number

© ©® N o g M w D

Input Password

=
o

. Input Text

=
=

. List View

[EnY
N

. Menu

=
w

. Radio Buttons

=
IS

. Select

User Interface Workbench 44

15.
16.
17.
18.
19.
20.

Switch
Table
Text

Text Area
Train

Tree View

B) Controls

Available Components

This section contains the components, which are used to control the activity on the form.

For example, user has a form to transfer money from one account to another account in which he will
have the following two actions:

° Transfer button to confirm the transaction

° Cancel button to cancel the transaction

In the below example, buttons are displayed:

t Nur

X000 xx0166 - John S

OO xx0170
Balance : ¢
Amour

GBP £1,000.0(

payment for credit card

57 Characters Left

Following is the list of available components under this section.

1. Button

2. Button Set
3. Container
4

Component Loader

User Interface Workbench

45

Available Components

C) Framework Components

This section contains the components, which are predefined & supported by OBDX. It has in-built
functionality.

In the below example, an account input component which lists all the accounts of the user and shows
its details like balance and address of the account selected by the user .

XOOOXXXXXXXXX003

Balance : £201,065.0C

Following is the list of available components under this section.

1.

N o g bk~ 0w D

Account Input
Amount Input
Bank Look Up
Help Panel
Navigation Bar
Page Section

Row Control

D) Visualization

This section contains the components, which are useful to design a widget that display s information
graphically.

In the below example, a chart that shows the net worth of different accounts (CASA) of the user

My Net Worth we

User Interface Workbench 46

Available Components

Following is the list of available components under this section.
1. Chart

2. TimeLine

Details of components
A) Forms:

1) Anchor Tag:
Usage: This component is used to add a link. This link can be an image / icon or text.
Example:

Supported attributes:
a) Basic:
e Label

. Format Label

b) Advanced:

e Select anchor type

e Add formatter

e REST API chain

e Hook functions

e Add Loop

e Add Custom Attributes
e Conditional Field

c) Layout:

e Grid

User Interface Workbench a7

Available Components

2) Avatar
Usage: This component is used to display initials for name or product and images in a circle.
Example:

Supported attributes:
a) Basic:
e Label

b) Advanced:
e Select Size
e Enter Image Path
e Enter Initials
e Add Loop
e Add Custom Attributes:
e Conditional Field

c) Layout:

e Grid

3) Check Box:

Usage: This component is used to add checkbox to allow a user select one or more options from
the available choices.

Example:

Supported attributes:

a) Basic:
. Label
. Hide Label

User Interface Workbench 48

Available Components

. Value

e Options

b) Advanced:

e Value Change Handler
e Validations

e Required Field

e Add Loop

e Add Custom Attributes

° Conditional Field

c) Layout:

° Grid

4) Combo Box:

Usage: This component is used to add a drop down to allow user to make multiple selection
from the predefined options or type his own option.

Example:

_hror nterr xplorer >
Chrome Internet Explore

Satan

Supported attributes:
a) Basic:

I) Label:

e Hide Label
e Value

e Select Type
e Options

User Interface Workbench 49

Available Components

b) Advanced

e Value Change Handler
e Validations

e Required Field

e Add Loop

e Add Custom Attributes

. Conditional Field

c) Layout:

° Grid

5) Date Picker:

Usage: This component is used to add an input box to accept date as an input from user.
Example:

< May 2019

Supported attributes:

a) Basic:
. Label
. Hide Label
e Value

b) Advanced:

e Value Change Handler

e Validations

User Interface Workbench 50

Available Components

e Required Field
e Add Loop
e Add Custom Attributes

. Conditional Field

c) Layout:

e Grid

6) File Picker:

Usage: This component is used to add an action as a button to accept the documents (files) as
an input from user.

Example:

Choose Files | Mo file chosen

Supported attributes:
a) Basic:

e Label

d) Advanced:

e Selection Mode

e Enter Allowed File Extensions
e REST API chain

e Hook functions

e Required Field

e Add Loop

e Add Custom Attributes

. Conditional Field

e) Layout:
e Grid

User Interface Workbench 51

Available Components

7) Image:

Usage: This component is used to add an image.
Example:

Supported attributes:

a) Basic:

e Image source

b) Advanced:

e Add Loop

e [|)Add Custom Attributes
e lll)Conditional Field

c) Layout:

e Grid
8) Input Number:

Usage: This component is used to add an input box to accept numbers as an input from the user .
Example:

Enter years

22 v A

Supported attributes:

a) Basic:

. Label

User Interface Workbench 52

Available Components

. Hide Label

e Value

b) Advanced:

e Enter Minimum Length
e Enter Maximum Length
e Enter Step

e Value Change Handler
e Validations

e Required Field

e Add Loop

e Add Custom Attributes

° Conditional Field

c) Layout:

e Grid

9) Input Password:

Usage: This component is used to add an input box to accept the password as an input from the user.

Example:

Password

Supported attributes:

a) Basic:

. Label

. Hide Label
e Value

b) Advanced:

e Value Change Handler

User Interface Workbench 53

c)

Validations

Required Field

Add Loop

Add Custom Attributes

Conditional Field

Layout:

Grid

10) Input Text:

Available Components

Usage: This component is used to add an input box to accept text as an input from the user

Example:

Pune|

Supported attributes:

Basic
Label
Hide Label

Value

a) Advanced:

Value Change Handler
Validations

Required Field

Add Loop

Add Custom Attributes
Conditional Field

b) Layout:

Grid

User Interface Workbench

54

11) List View:

Available Components

Usage: This component is used to add a view which groups several items and display s them in

a vertical scrollable list

Example:
e J:: ,""g»ﬂ . Contact Number 9999900017 oo
G A act Number 704 Y ntates |
@ i‘:m' ¥ t]- yntact Number 887971057(m
Supported attributes:
a) Basic:
° Label
° Source variable
. Id attribute
b) Advanced:
° Renderer ID
e Pagination
° Indexer
e Add Loop
e Add Custom Attributes
e Conditional Field
c) Layout:
e Grid
User Interface Workbench 55

Available Components

12) Menu:

Usage: This component is used to add an element, which displays popup menu with multiple
options relevant to the particular row for easier navigation.

Example:

KRXXKOOUXKKDDS3

Supported attributes:

a) Basic:
e Label
e ID
e Options

b) Advanced:

e Enter Menu Launcher
e REST API chain

e Hook functions

e Add Loop

e Add Custom Attributes

e Conditional Field

c) Layout:

e Grid

13) Radio Buttons:

Usage: This component is used to add buttons to let a user select an option from the available
choices.

Example:

User Interface Workbench 56

Available Components

Supported attributes:
a) Basic:
e Label
e Hide Label
e Value:

e Options

b) Advanced:

e Value Change Handler
e Validations

e Required Field

e Add Loop

e Add Custom Attributes
e Conditional Field

c) Layout:

e Grid:
14) Select:

Usage: This component is used to add a drop down, to allow user to make a choice from the
predefined options.

Example:

Andorra

United Arab Emirates

Afghanistan
Antigua And Barbuda
Anguilla

Albania

User Interface Workbench 57

Supported attributes:
a) Basic:

Label

Hide Label
Value
Select type
Options

b) Advanced:

Value Change Handler
Validations

Required Field

Add Loop

Add Custom Attributes

Conditional Field

c) Layout:

15) Switch:

Grid

Available Components

Usage: This component is used to add a toggle button for binary status such as on/off.

Example:

«©

Supported attributes:
a) Basic:

Label
Hide Label

Value

b) Advanced:

User Interface Workbench

Value change handler

58

Required field

Add Loop

Add Custom Attributes
Conditional Field

c) Layout:

16) Table:

Grid

Available Components

Usage: This component is used to add a view which groups several items and display s them in
row- column fashion.

Example:

APINTERNET

Supported attributes:
a) Basic:

Label
Source variable
Id attribute

Columns

b) Advanced:

Row renderer
Pagination

Add Loop

Add Custom Attributes
Conditional Field

c) Layout:

User Interface Workbench

Grid

59

Available Components

17) Text:

Usage: This component is used to add a simple text.
Example:

You do not have any Loans

Supported attributes:
a) Basic:
b) Advanced:
e Arialabel
e Tagtype
e Binding Source
e Add formatter
e Addloop
e Add Custom Attributes
e Conditional Field

c) Layout:

° Grid

18) Text Area:

Usage: This component is used to add an input box to accept the multi-line text as an input from
user.

Example:

Enter Description

This is a text-area.

This accepts multi-line input

Supported attributes:
a) Basic:

. Label

User Interface Workbench 60

Available Components

. Hide Label

e Value

b) Advanced:

e Enter rows

e Value Change Handler
e Validations

e Required Field

e Add Loop

e Add Custom Attributes

e Conditional Field

c) Layout:
e CGrid
19) Train:

Usage: This component is used to add an element for navigation that allows a user to go
between different "steps” i.e. different components. Each step can display information about the
state of the step such as "visited", "unvisited", "disabled".

Example:

Request Parameters Build Your Form

Supported attributes:

a) Basic:
e Label
e Value

b) Advanced:

e Selected step

e Value change handler
e Add Loop

e Add Custom Attributes:
e Conditional Field

c) Layout:

User Interface Workbench 61

Available Components
) Grid

20) Tree View:

Usage: This component is used to add an element to display the hierarchical relationship
between the items of the tree.

Example:

N

o

B News
8 Blogs
B Today
B Yesterday
B Archive
4 §F Links
» @8 Oracle
E iBM
B Microsoft

Supported attributes:
a) Basic:
e Label

e Source variable
b) Advanced:

e Renderer ID

e Add Loop

e Add Custom Attributes
e Conditional Field

c) Layout:

e Grid

User Interface Workbench 62

Available Components

B) Controls:
1) Button:

Usage: This component is used to add a call to action to the page which can be configured to perform
various actions on its click.

Example:

Supported Attributes:
a) Basic:

e label
b) Advanced:

e |cons

e Select Class Type

e Select Type

e Rest API Chain

e Hook Function

e Add Loop

e Add Custom Attributes
e Conditional Field

c) Layout:

e Grid

2) Button Set:

Usage: Basically button set is a group of button which can be used as radio button or checkbox button. In
case of single selection it act as radio button and in case of multiple selection it act as checkbox set
button

Example:

a) Radio button set

User Interface Workbench 63

Available Components

b) Checkbox button set

- I8

Supported Attributes:
a) Basic:

e ID: It accepts the same value as Label
e Value
e Select Type:

1) Buttons Set One: Choose this to use it as radio button set
2) Button Set Many: Choose this to use it a checkbox button set

e Options
b) Advanced:

e Value Change Handler
e Add Loop

e Add Custom Attributes
e Conditional Field

c) Layout:

e Grid

3) Container:

Usage: This component is used to provide a wrapper or group for form elements to apply a common
behavior to them. e.g. display / hide of buttons. An element is always placed inside the container start
element and container end element.

1. On Dropping the container element at the desired position on form area, a panel will open
on the right side
2. User can select the type, fill the required fields and click confirm.

Note: Container can also be used inside container.

User Interface Workbench 64

Available Components
Supported Attributes:

a) Basic:

Select Type Of Container

b) Advanced:

Add Loop
e Add Custom Attributes
Conditional Field

c) Layout:
o Grid
4) Component Loader:

Usage: Component Loader is used to load already created component or partial in current component.
Supported Attributes:

a) Advanced:
e Select Type:
a) Component
1) Select Type
i) Framework Elements: To use Framework Components.
Refer to framework components section for more detail.

ii) Transaction: To load transaction type of component. Refer to
Transaction component section.

) Single: To load normal component.
b) Partial:

e Add Loop:
e Add Custom Attributes:
. Conditional Field:

b) Layout:

. Grid:

User Interface Workbench 65

Available Components

C) Framework Component:

These components are predefined component that can be plugged with the user's created
component to give specific functionality. Different framework component:

1) Account Input:

Usage: Component which provides account selection that is fetched from current logged in user or
custom URL

Example:

aoooooxxx 0046

XXKXKXXAKKXX0046

XXX HKXNC003 5

XXKXKXXAKKNX0024 _
nits

XOOOCOO000001 3

wNowW CaTeT

Supported Attributes:
a) Basic:

e Label
e Value
b) Advanced:

e Enter Type: These values will passed to ‘type’ key in params for account input.
1. balance
2. address
3. nodeValue
4. loans
e Add Loop:
e Add Custom Attributes:

e Conditional Field:
c) Layout:

e Grid

User Interface Workbench 66

2) Amount Input:

Usage:

Available Components

This component is used to accept amount in an input box. The component gives currency

selection and entered amount is formatted with respect to selected currency.

Example:

GBP

£345.00

Supported Attributes:

a) Basic:

b) Advanced:

c) Layout:

User Interface Workbench

Label

Value

Enter Currency Variable: To store selected currency value.
Required

Currency List Required: Whether to display currency list. In case currency list is
required, user has to provide URL to fetch currency list or provide a function called
Currency Parser which returns the currency list.

Currency URL: URL for Fetching currency.

Currency Parser: Custom function which returns currency list that can be declared in init
function

Enter Root ID: Root id which will be passed in params of amount input.

Enter Root Class: Root class which will be passed in params of amount input.
Add Loop

Add Custom Attributes

Conditional Field

Grid

67

Available Components
3) Bank Look up:

Usage: This component is used to provide bank look up on the basis of IFSC Code, state, city or branch
name.

Example

Search IFSC Code X
IFSC Code Bank Name
A

State City

Bank Name Branch Address IFSC Code
AARBDESW 13, VARDANANTS STR. AARBDESW108
AAAKUKD2 SALAM STREET AAAKUKOZXXX
APACGB61001 APACGB61001
BARCLSY MUMBAI BARCMMOTXXX

Supported Attributes:
a) Basic:

e Label
b) Advanced:

e Clearing Code Type
e Account Type
e Region

. Network Code

e Add Loop
e Conditional Field
c) Layout:
e Grid
4) Help Panel:

User Interface Workbench 68

Available Components

Usage: This component is used to display related information about the current component .

Example:

Image Source Path

)|

Mote Heading

I NIS TUNCTION enapies you 10 onpoarda and
manage users, their personal information
and their login credentials for channel

Janking access. o
Description

You can also define the various Touch Points
rom which the user can access the
application and limit package applicable for
-he same.

Jser Status change (lock/unlock) and
wvhether the channel access has to be given
‘0 the user can be simply be managed and
Jpdated from the search results.

Button Name
Cregte |

Supported Attributes:
a) Basic:

e Partial Name: Name of the partial which will be created inside
ChannelPath/partials/help/

b) Advanced:

e Enter Heading

e Image Source: Path of image inside channelPath/images/

User Interface Workbench 69

Available Components

e Enter Description

e Enter Button Name

e Rest API Chain: Rest to be fired on button click

e Hook Function: Write action to be performed on button click
e Add Loop

e Conditional Field

c) Layout:

e Grid

5) Navigation Bar:

Usage: This component is used to provide tab based page Navigation, where each tab item / name will
display specific view.

Example:
= (ipfutura bank Qo e e ™

Account Details

Account Details View Statement Cheque Book Request Cheque Status Inquiry Stop/Unblock Chegue Debit Cards Request Statement Swe >
Customer Name Account Number Net Balance add Nickna
roduct : Add Nickname
Gloria Rodrigues XKXXXXXXKXXX0025 £1,254,534.00 AT c

Basics Balance Details

Customer D Available Balance

#4801 £1,254,534.00

Single

Branch Unclear F

AT3 FLEXCUBE UNIVERSAL BANK, Callister Avenue 115, London, GREAT BRITAIN £0.00

Active £0.00

omination Average Quarterly Balance

Not Registered £1,200,000.00

Sweep-in Provide Average Monthly Bala

Yes £1,100,000.00
£2,000.00
£190,000.00

Back to Da ard

Copyright @ 2006, 2017, Oracle and/or its affiliates. All rights reserved. | Security Information | Terms and Conditions

Supported Attributes:

a) Basic:

User Interface Workbench 70

Available Components

. Label:

e Tabs: Can be provided externally or custom just like select box option. In case user is
not familiar with how to provide option, refer Option section in Available attributes.

b) Advanced:

e Ul Options:

a) Icon Available
b) Default option
¢) Menu Float

d) Full Width

E) Edge

e Navigation Bar Description
e Add Loop
e VI) Conditional Field

c) Layout:

° Grid

6) Page Section:

Usage: This component is used to provide basic layout structure and styling for every page / screen.

Note: All the form elements must be present inside this container.

Example: In the example below, Page Section is added and header is optional. The other form elements
can also be added via Partial.

User Interface Workbench 71

Available Components

Basics Page Section Header

***[08

AT3 FLEXCUBE UNIVERSAL BANK, Needal Street, London, GREAT BRITAIN

Active

Not Registered

No

Supported Attributes:
a) Basic:

e Label

e Format label

e Hide Page Heading: Switch to active mode to hide the page section heading.
b) Advanced:

e Add Loop

e Conditional Field
c) Layout:

e Grid

7) Row Control:

This component is used to display label and its corresponding value in structure supported by OBDX
framework

Example:

User Interface Workbench 72

Available Components

Supported Attributes:
a) Basic:

e Label
e Format label
e Value

b) Advanced:

e Add Formatter
e Add Loop
e Conditional Field

c) Layout:
e Grid
D) Visualizations
1) Chart: There are three types of chart that can be drawn with the help of tool:
a) Pie Chart,
b) Bar Chart,

¢) Line Chart. For more information about each chart type, visit jet.us.oracle.com.

Example:

User Interface Workbench 73

60

50

40

20

10

60

50

40

30

20

10

O Initial M CQualification

Available Components

M

B e

Imitial Qualification

1980

4.72%

Supported Attributes:

a) Advanced:

e Series
e Groups
e Add loop

e Add Custom Attributes
e Conditional Field

b) Layout:

e Grid

2) Timeline:

User Interface Workbench

Meeting

Proposal

2010

Close

2020

74

Available Components

Usage: This component is used to display the timeline component. To provide values to timeline
component use Add Custom Attribute (refer section Add Custom attribute in Available Attributes).

Example:

Safra Catz, President. Oracle: OpenWorld

HRMall and PeopleSoft: Human Capital Delivered to the Boardroam

Oracle Exadata: Consolidating Database Applications

Oracle Events

Data Warehousing Best Practice

Larry Ellison on the Sun-Oracle Close Larry Ellison CEQ, Oracle: OpenWorld

Up Close: Interview with NZOUGs Lynne O'Donaghue Oracle OpenWorld 2009 Keynote Highlights NetBeans IDI

July

25 | 502 | 508 | 516 523 | SR | 606 | 613 | 620 | 27

Supported Attributes:
a) Basic:
e Label

b) Advanced:

e Add Loop
e Add Custom Attributes
e Conditional Field

c) Layout:

e Grid

User Interface Workbench 75

Available Attributes

11. Available Attributes
11.1 Label:

Description: This attribute is a mandatory element and is used to display the label of the element on
the screen.

Component to accept the input: Input Text

Example: User has an input field to provide account name as shown in the image.

Jon snow

Usage: Enter the label as “Account Name” in the input text field as shown in the image.

Account Name

11.1.1 Hide Label:

Description: This attribute is used to hide the label of the element on the screen.

Component to accept the input: Switch

Example: In the below example, User can apply this component to use checkboxes that selects rows
in a table without displaying the label.

User Interface Workbench 76

Available Attributes

RN

Usage: Enable the switch on as shown in the image. It will disable the label of the element.

11.1.2 Format Label:

Description: This attribute is used when user wants to change the label or text dynamically.

Components to accept the input: Switch and Input text

Format Labe

If user enabled the switch, it will display two input texts.
1. Add variables to label

2. Enter variable’s mapping

User Interface Workbench 77

Format Labe
Add Variables To Labe
Enter Variables Mapping

Available Attributes

Example: In the example below, user name of logged in user and other login details are display ed.
User name and Login details will be dynamic. (“Welcome <user name>" and “Last Login <login

Details>") and will change based on the current user and time.

Welcome, Matt Dam ~-

Last login 06 Mov 02:26 P

Usage: Enter the label of an element which is static (e.g. “Welcome") in Label attribute,

Then enable the “Format Label” switch. It will display two input texts.

Label

Welceme

Format Labe

User Interface Workbench

78

Available Attributes

11.1.3 Add variables to label:

When user enables the switch, the label user entered in Label attribute will be pre-filled in this input
field as shown in the image.

Label

Welcome

Format Labe

Add Variables To Labe
Welcome
Enter Variables Mapping

I,

m

Now user needs a key to hold the value, which will change dynamically. In the example below, key
name is user name. User will have to add this key name (user name) after the label (Welcome) in this
field.

To add a key, write the key name surrounded by curly braces.

Label

Welcome

Format Labe

Add Variables To Labe

Welcome {username}|

Enter Variables Mapping

User Interface Workbench 79

Available Attributes

11.1.4 Enter variables mapping:

User will have to map this key to a variable, which will hold the dynamic value. In the example below,
the value is stored in a variable called as user _name.

To map the key to the variable, write the key name, colon (:) and variable name.

Label

Welcome

Enter Variables Mapping

username . user_name

User can have multiple keys and values as shown in the image.

Label

Welcome

Format Labe

Add Variables To Labe

Welcome {username} {accountType}

Enter Variables Mapping

lisername : user_name, accountType © accou

User Interface Workbench 80

112 Value:

Available Attributes

Description: This attribute is used to store the value of an element. This value can be displayed on

the screen or used for further processing, such as sending to server.

Components to accept the input: Select Box

This select box has five options

a. Observable variable
b. Rest properties

c. Inside table

d. Inside List/tree view
e. Inside loop

Observable Variable

Rests Pr operties

Inside Table

nside List/Tree View

nside Loop

Example: In the example below, User has a form to request a statement account for a given time
period. In the form, account number component and two date pickers, From date and To date are
available. User will send the values of From date and To date field to the server to fetch the details.

User Interface Workbench

81

Available Attributes

Account Number
OO0 166
Balance : £347,097.22

From Date

To Date

o oo B e

Usage:
User can store the values of these fields using five different ways. By selecting the type based on
requirement.

a. Observable variable

In some scenarios, the data fetched from the REST API cannot be directly shown on the
screen. Similarly the data submitted by the user cannot be directly saved on the server. It
needs processing. To process this data, sometimes the user needs to store it in another
variable. Therefore, if user wants to store the value of an element into a variable, which is
defined by you, this option should be selected.

In the example below, user has a variable From Date, storing the value of From Date field.

Select the option as “Observable variable”. After selection, it will display an input field named
as variable name.

Enter this variable name (fromDate) into “variable name” field as displayed in the image

below.
Value
Observable Variable ~
Variable Name
fromDate]

b. Rest properties:
Rest API can be used for multiple requirements.
1. GET: To fetch data from the server.
2. POST: To save data on the server.

3. PUT: To modify data on the server

User Interface Workbench 82

Available Attributes

1. DELETE: To delete data from the server.

When user selects the option “Rest properties”, it will display a select box named as “Select REST
API”.

Select REST API: This select box display s all the REST APIs that user has selected in Step 3 i.e.
REST API Selection as shown in the below image.

Value

Rests Properties

Select REST API
faccounts/demandDeposit/{accountl

d} get v

When user selects a REST API from this select box, it will display another select box named as
“Select Options”.

Select Options: This select box has two options as shown in the below image.

Value

Rests Properties

faccounts/demandDeposit/{faccountl._.

Select Options

Select Option

Required Or Optional Parameters

Payload Properties

User Interface Workbench 83

Available Attributes

e Required and Optional Parameters :
To understand what is “Required or Optional Parameters” refer to Required and optional parameters
section.

When user will select” Required or Optional Parameters” option, it will display two different select
boxes.

Value

Rests Properties

a. Required Parameters: This select box will display all the required parameters of the selected
REST API.

b. Optional Parameters: This select box will display all the optional parameters of the selected
REST API.

Example: User has a REST API “/accessPoint/{accessPointld} get v1”. In this REST API,
accessPointld is a required parameter and user wants this parameter to be filled as in Input

and wants to map this property to input text.
Usage:
a. Select “REST Properties”.
b. Select REST APl i.e. / accessPoint/{accessPointld} get v1
c. Select Required or Optional Parameters
d. Map the accessPointld to the input text.

User Interface Workbench 84

Available Attributes

Value

Rests Properties

laccessPoint/{accessPointld) get vi

Select Options

Required Or Optional Parameters

Required Parameters

accessPointld

Optional Parameters

e Payload Properties:

When user select “Payload Properties”, it will display a select box named as “Properties”.
Properties: This select box will display all the payload properties of the selected REST API.
As discussed above, REST API can be used for multiple request types like GET, POST OR PUT.

In the case of GET request, server sends the data to the user . In this case, this response data is
considered as payload. All the payload properties listed in this select box will store the server
response of that selected REST API. User can map this property to the elements, which display s
the data. For example, Row control, Text.

In the of POST or PUT request, user sends the data to the server. In this case, this request data
is considered as payload. All the payload properties listed in this select box will store the data
entered by the user for that selected REST API. User can map these payload properties to the
elements, which accepts the input, and send it to the server.

User Interface Workbench 85

Available Attributes

Value

Rests Properties

elect REST AP

[47]

faccounts/demandDeposit/{accountl...

Select Options

Payload Properties

Properties

| o
Select payload Property
.demandDepositAccountDTO.id.dis
playvalue

.demandDepositAccountDTO.id val

ue

In the above example, there are two components.
1. Row Control to display the account number
In this case, account number is fetched from the server.
a. Select “REST Properties”.
b. Select REST API i.e. /accounts/demandDeposits/{accoundid} get v1
c. Select Payload Property
d

This is the GET request Payload Property will store the response came from the
server, hence select the required property from payload i.e.
demandDepositeAccountDTO.id.display value and map it to the row control.

User Interface Workbench 86

Available Attributes

Value

Rests Properties ~

elect REST AP

[47]

faccounts/demandDeposit/{accountl...

Select Options
Payload Properties ~
Properties

.demandDepositAccountDTO.id.disp....

2. Two date pickers to store the dates.

In this case, dates need to be sent to the server.

a. Select “REST Properties”.
b. Select REST APl i.e. /accounts/demandDeposits/{accoundld} post v1
c. Select Payload Property
d. This is the POST request Payload Property will store the input and this payload will be
sent to the sever, select the required property from payload i.e.
demandDepositeAccountDTO.id.display value and map it to the date pickers.
falue
Rests Properties s
Select REST AP
faccessPointGroup post v1 -
Select Options
Payload Properties g
Properties
.AaccessPointGroupDTO creationDate

User Interface Workbench 87

Available Attributes
e Inside table:

If element is inside the table, then select this option.

Example: In the below image, user has Invoice list table as display. All the components, which are
used, are inside the table such as checkbox, input box etc. select this option.

Invoice List
Counterparty Name & ID Program Name and ID Invoice No Invoice Amount Due Date Status Comments
Q OBDXDEY COUNTERPARTY BPT BULKFUVD126 £100,000.00 21 May 2019 Rzizad
OBDXDEV COUNTERPARTY BPT BULKFUV0127 £100,000.00 21 May 2019 Raized Type Comments
OBDXDEV COUNTERPARTY BPT BULKFUVOD124 £100,000.00 21 May 2019 Raised Type Comiments
OBDXDEV COUNTERPARTY BPT BULKFUVO130 £100,000.00 21 May 2019 Raised Type Comiments

When user will select “Inside table” option, it will display an input box to add a variable name as
shown in the below image. This variable is nothing but one of the keys available in the data source
object given to the table. This variable can be used to display the data or to store the data.

lue

oy

Inside Table

Variable Name

Example: The datasource object looks like this:
datasource[0] {
counterPartyName: “OBDX_COUNTER_PARTY?”,
invoiceNo: "BULKFUV0126”(this is string)

comment: user _comment(this is variable)
}

Note: Datasource is an array of objects. The object shown above is just one object for the first row of
the table. Data source will have an object for every row. That is why it is written as datasource[0] i.e.
first object in an array.

User Interface Workbench 88

Available Attributes

Let us consider two cases here:
1. Invoice No:

This field is displaying the data. Now user wants to display the invoice BULKFUV0126. As
user can see in data source object written above, the key, which stores invoice
number(BULKFUV0126), is “invoiceNo”. User will enter this key as a variable name for this
field.

lue

o

Inside Table

riable Nam

o
o
ih

invoiceNo

2. Comments:

This field is accepting the user comments, i.e. it is storing the data entered by the user. User
will need a variable to store the data, which is user _comment variable. As user can see in
data source object written above, the key, which has a reference to the variable(user
_comment) is “comment”. User will enter this key as a variable name for this field.

lue

o

Inside Table

ble Nam

o
o
Iyh

comment

User Interface Workbench 89

Available Attributes

e Inside List/tree view :

If element is inside the list or tree view, then select this option. This is similar to the table. User will
have the data source having all the objects. User will write the key name into the variable name for
their respective field.

lue

o

Inside List/Tree View

comment]

e Inside loop:

Refer “Add loop” attribute to understand what is loop.
If the element is inside the loop, user will select this option.
referring to the same example of add loop attribute.

In this example, there are three fields: name, city and mobile number. They are inside the loop. for
these elements user will select “Inside loop” as value.

The objective is as follows:
user _data = [{name: “James Smith”, city: “New York”, mobileNo: 3454654},
{name: “Christopher Robin”, city: “Manhattan”, mobileNo0:4758945},

{name: “William Turner”, city: “London”, mobileNo:7857694}];

For example, user is adding the first text element, which displays the name. User will select an option
as “Inside loop”.

User will enter the key, which is storing the name (James Smith, Christopher Robin and William
Turner) of every object. That key is “hname”. Enter this “name” key in variable name field as shown in
the image below.

User Interface Workbench 90

Available Attributes

Similar for city and mobile number.

Inside Loop

Inside Loo

'f\[‘_\

mobileNO)|

11.3 Options:

Description: This attribute is used for all the components, which enables the user to select one or
more options. For example, select box, radio buttons, checkboxes etc.

Component used to accept the input: Collapsible element, Button set and Input texts.

When user clicks on Options, it will expand. There are two ways to add the options.
a. External

b. Custom

User Interface Workbench 91

Available Attributes

4 Options

Type

C LISlD " -

Variable Name

Value Key

Label Key

Example: User has a select box, which shows multiple options like Current month, Previous month
as shown in the below image.

Current Month
Current Month
Previous Month
Previous Quarter

Date Range

Usage: User can add these options using the following two ways
a. External

In this type, if user has options to be displayed on the screen which are getting fetched from a
REST API, then select the type as external.

User Interface Workbench 92

Available Attributes

4 Options

vpe

Variable Name

Under this type, there are three input fields.

1. Variable name: This field stores the data fetched from REST API. It is mandatory to have the
data in this variable in value=>label format. In case the data is not in this format, then
convert it to the required format and enter that variable name in this field.

Example: The variable name is time_range.
This variable has the following data which is fetched from REST API.

time_range = [{ label : “Current Month”, value :"CM?}, { label : “Previous Month”, value :"PM"},
{ label : “Previous Quarter”, value :"PQ"}, { label : “Date Range”, value :"DR"}]

2. Value key: As mentioned in point (1), value from variable name represents the actual data
that will be used for further processing and is to be entered in this field.

Here time_range is an array having multiple objects.
In this object {label:"Current Month”, value:"CM”} , value “CM” is going to be processed.

Hence, in this case value key will be, “value”.

3. Label Key: As mentioned in point (1) above, label from variable name represents the
description that needs to be displayed against an option of an input field such as select box,
radio button set etc. This label is to be entered in this field.

User Interface Workbench 93

Available Attributes

In this object {label:"Current Month”, value:"CM”} , label “Current Month “is going to be
displayed on screen,

in this case label key will be, “label”.

Note: User can name this value key and label key as per their choice i.e. {label:"Current Month”,
value:"CM”} can be written as {name:"Current Month”, id:"CM”}. In this case, value key will be “id”,
and label key will be “name”.

4 Options

Type

Variable Name

time_range

a. Custom

In this type, if user wants to add the options manually, i.e. for data not fetched from any
REST API, then select the type custom.

User Interface Workbench 94

Available Attributes

4 Options
_}'[:'%
- External
Enter Value (xj
Enter Labe
Add Options

Under this type, there are two input fields.

1. Enter Value: This field represents the actual data that will be used for further processing. If
user enters the value in double quotes, it will be processed as string. For special cases such
as Boolean, where the value is true/ false do not enter the value in double quotes.

In the below image, “CM”, “PM”,”"PQ” are the values.

2. Enter Label: This field represents the description that needs to be displayed against an
option of an input field such as select box, radio button set, etc.

as shown in the image below, Current Month, Previous Month and Previous Quarter are the
labels.

User Interface Workbench 95

Available Attributes

User can add more options using the “Add Options” link highlighted in green below.

User can delete the option using the icon highlighted in red below

Ente = Feny
Enter Value D)
PO

Enter Label

Previous Quarter

11.4 Value change handler:
Description: This attribute is used to handle the events, when the value of an element is changed.

Components to accept the input: Switch, select box, and code editor

User Interface Workbench

96

Available Attributes

When user enables the switch, it will display an input box and a button as shown in the below image.

Value Change Handle
LE=1LE SR L L L [=H AL
=

REST API Chain
Select REST API Chai
Hook function
Open Editor

1. REST API Chain: To understand REST chaining, please refer REST API Chaining section. This
select box lists all the REST API chaining that user has created in step four i.e. REST API
Configuration. From this select box, user can select REST API chain that he wants to fire when
the value of an element is changed.

2. Hook function: There is a button named as “Open Editor”. When user clicks on this button, it will
open a code editor as shown in the below image. In this editor, user can write the code to be
executed when the value of an element is changed.

To understand more about editor, refer Open Editor of hook function section.

User Interface Workbench 97

Available Attributes

1 lf.-"f.'r*ite code here;

Example:
1. User has two select box options

Buyer Name: This select box lists all available buyer names.

Name of Program: When user selects a buyer name, this select box will lists available

programs specific to the selected buyer.

NonCustomerSecond N SupplierProgram1 W
CounterPartyBuyer SupplierProgram1
OBDXDEY COUNTERPARTY NRJCORPPROG
PUOCNase Oraer oae
NonCustomerSecond

User Interface Workbench

98

Available Attributes

In above example, user will need to fire a REST API to fetch the available programs of the selected
buyer. It means the user needs to perform an operation when the value of buyer field changes. In
such scenarios, this attribute is used.

Usage: Enable the “value change handler” switch.

Select the REST API that user needs to fire when the value of buyer field changes as shown in the
below image.

e

REST API C

5]

Change Handler

/payments/transfers/peerToPeer/user
get v1

x

Hook function

Now if user clicks on the “Open Editor” button, it will open the code editor.

1 paymentstransferspes ﬂPEerusergetEall(sslf.paymentstransferspeerTDPeePusergEtvalue_uf73:::- h
2 .then(fumctiun {

/f result for get : "/payments/transfers/peerToPeer/user”

self.paymentstransferspeerToPeerusergetVar(response);

[IR RS

})

- canee!

A default code is already present in the window generated by the tool. When user selects a REST
API, the tool generates the required code to execute that REST API. However, in some cases, there
is a need to do some additional operation on the data fetched from the server. Therefore, for this
purpose, there is a support for code editor. In such scenarios, use the response variable(highlighted
in red circle in the above image) for further processing.

User Interface Workbench 99

Available Attributes

Whenever the value of buyer name field changes, it will execute the block of code written inside the
editor.

1) User has a form and wants to give an option to use this form as a template. If the user says yes,
then an input text field is displayed to accept the template name as shown in the image.

Usage: In this example, user will need a variable to handle this case, say “isTemplate”. Initially this
variable will have a value set as false (Boolean). it will hide “Template Name” input field. But when
the user will select “Yes” option, its value will change to true (Boolean) and it will display the input
field “Template Name”.

Enable the “value change handler” switch.

As user does not need to fire any REST API, no REST API is to be selected.

Walue Change Handler
«
REST API Chair
Select REST API Cha
Hook function
Open Editor

Click on the “Open Editor” button, and write code inside the editor as shown in the below image.

newValue represents the new value of the field. If user selects “Yes”, newValue will be “Yes” and
variable will be true. If user selects “No”, newValue will be “No” and variable will be false. Whenever
the value of radio button changes, it will execute this block of code.

Note: As there is no REST API selected, there will be no auto-generated code.

User Interface Workbench 100

Available Attributes

1 if(newvalue === "yes") {
2 self.isTemplate(true)

3 Jelse {

a self.isTemplate(false)
5} B
6

- cancs

11.5 Validations:

Description: This attribute is used to add Ul level validations for an element.

Components to accept the input: Switch, Radio buttons, Select box

When user will enable this switch, it will display two radio buttons as shown in the below image.

1. Predefined: There are some validations, which are common such as mobile number must have
10 digits. Such validations are already defined by OBDX framework.

When user selects this option, it will display a select box named as “Select Validations” as shown
in the below image. This select box lists all the predefined validations, which are available. For
example, mobile number, address, email etc.

User Interface Workbench 101

alidations
«
Selec
® Predefined Custom
Select Validation
|
EMAIL
MOBILE_NO
IFSC_CODE
ADDRESS
POSTAL_CODE
NTP

Available Attributes

2. Custom: There are some validations which are element specific, for example, some element must
have a specific length or special characters etc. Select this option to customize validations.

When user selects this option, it displays a select box named as “Select Validations” as shown in
the below image. This select box lists all the custom validation options such as “alphabets with

space”,

User Interface Workbench

alphabets with some special characters” etc.

102

Validations
Select Validations Type

Predefined @ Custom

Select Validation

Validation W

[l
1]
[y

LA VAL D
ALPHABETS
ALPHABETS_WITH_SPACE

ALPHABETS_WITH_SOME_SPEC

IAL

LOWER_ALPHABETS

Available Attributes

Below the select box, there is an input box named as “Enter error message” and a switch for “Length

validation” as shown in the below image.

Select Validation

ALPHANUMERIC_WITH_SPACE

User Interface Workbench

103

Available Attributes

Enter error message: Enter the error message that should display on the screen when the
validation fails.

Length validation: Enabled this switch, if there is a length validation. When user will enable this
switch, it will display two input boxes for minimum length and maximum length.

Example: User has two fields, which needs some validations.
1. Input field to accept the phone number:

Validation for phone number is “Enter 10 or fewer characters, not more.” As shown
in the below image.

Shone Number 91 / |344095604578678

“ Enter 10 or fewer
characters, not more.

Usage: This validation is available in predefined validation.

After selecting the validation, select the option, “mobile_no” as shown in the below image.

MOBILE_NO

2. Input field to set the password:

Validation for password is “Password must have minimum 8 and maximum 12
characters. It can have special characters”.

Example of Error Message can be ‘Please enter a valid password.

User Interface Workbench 104

Available Attributes

(EEETTT

o Flease enter a valid password

o Enter 8 or more characters, not
fewer.

Usage: This validation is specific to password field, and hence is not available in predefined
validation. The user needs to customize the validation. Therefore, user will enable the validation
switch and select custom validation.

From the select box, user needs to select the option, “APHABETS_WITH_ME_SPECIAL”.
Enter the error message example ‘password is not valid’ into the input box.

Enable the switch and enter the minimum length and maximum length in respective input fields as
shown in the below image.

User Interface Workbench 105

Validations

Select Validations Type

Dradafino et
Fredenned @ Cusion

ALPHABETS_WITH_SOME_SPECI. ..

Enter Error Message

Please enter a valid password

Length Validation

@)

Minimun Length

8

Maximum Length

12|

11.6 Required field:

Description: This attribute is used to make the field mandatory, i.e. user cannot leave the field

empty.

Components to accept the input: Switch

Available Attributes

In the below Example, User has a date picker and wants to make it mandatory i.e. user must select
the date otherwise an error is will be displayed.

User Interface Workbench

106

Available Attributes

o You must enter a value

Usage: Enable the switch as shown in the below image. This will make the date picker field
mandatory.

11.7 Add Loop:

Description: This attribute is used to display the same element multiple times with different values.

Components to accept the input: Switch and input text.

When user enables the switch, it displays an input text named as “Looping variable name” as shown
in the below image.

In the below example, User has a template, which displays the name, city and mobile number of the
three user s.

User Interface Workbench 107

Available Attributes

Name: Name: MName:

James Smith Christopher Robin Willilam Tumer
City: City: City:

Mew York Manhattan London

Mobile number: Mobile number: Mobile number:
3454654 4758945 7857694

There are two ways in which this can be achieved:

1. Writing the template 3 times for three users, which is quite cumbersome and will produce
unnecessary redundancy in code.

2. Writing the template once, and using it 3 times for three user s which can be achieved using add
loop attribute

Usage: Assume user has a normal container (For container refer Container element) and all the
fields(hame, city and mobile number) are wrapped inside this container.

The user details are stored in the variable “user _data™

user _data = [{name: “James Smith”, city: “New York”, mobileNo: 3454654},
{name: “Christopher Robin”, city: “Manhattan”, mobileN0:4758945},

{name: “William Turner”, city: “London”, mobileNo:7857694}];

Note: user _data is an array of objects. Each object represents one user. In this array, there are three
objects length of this variable is three. Hence, the container will repeat three times.

To enable the switch of add loop attribute, and user will enter user _data variable name in the
“Looping variable name” input field as shown in the below image.

«

user_data

To know how to add the elements, which are inside the looping variable, (hame, city, mobile humber)
refer to Inside loop attribute section.

Note: In this example, looping variable has been added to the container. But user can add the
looping variable to any element using the same process (For example, input text, anchor tag etc.) In
that case, input text and anchor tag will be repeated as many times as the length defined by the
looping variable.

User Interface Workbench 108

11.8 Add Custom Attributes:

Available Attributes

Description: This attribute is used to add custom attribute, i.e. attribute not supported by the tool.

Components to accept the input: Switch, Input box

When user enables the switch, it will display two input boxes and two switches as shown in the
image. User can add more attributes using the link “Add attribute” highlighted in green and can delete

the attribute using the icon highlighted in red.

Il

w
o
9]

(T
o]

Q
5]

Add Attribute

a.

b.

Input boxes :

1. Enter attribute: This field represents the attribute name.

2. Enter value: This field represents the attribute value. It supports both strings and

variables. For strings use double quotes(*”).

Switch:

Attributes support two types of bindings : one way binding and two way binding. To

understand one way binding and two way binding refer:
https://knockoutjs.com/documentation/value-binding.html

1. Use colon: This option is only valid if the user is using one way binding to add attributes
to the JET components, for example, oj-input-text, oj-select-one etc. Use this field as
some of the JET attributes need colon before attribute name. If this switch is enabled,
attribute name will start with colon. Refer JET site to know whether the attribute needs

colon or not. http://jet.us.oracle.com/6.1.0/jetCookbook.html

2. Use curly braces: If this switch is enabled, attribute value will be surrounded by curly

braces.

User Interface Workbench

109

https://knockoutjs.com/documentation/value-binding.html
http://jet.us.oracle.com/6.1.0/jetCookbook.html

Available Attributes

For one way binding, use square brackets.

For two way binding, use curly brackets.

Example: User can use this attribute in two cases.

1. User has a list and wants to refresh it whenever the data changes. To refresh the list, its ID
attribute is required. Tool generates ID for every element but it is random and will change every
time the component is edited. Therefore, this ID cannot be used to refresh the list. Hence, user
can add new id attribute. It will replace the id generated by the tool. In the below example,
“listview” is taken as an attribute.

Usage: Enable the switch.
Enter the attribute name in “Enter Attribute” field. Attribute name is “id”.

Enter the attribute value in “Enter Value” field. Attribute value is “listview”. As it is a simple string, use
double guotes as shown in the image below.

This id attribute needs colon. enable the switch.

This attribute needs one way binding, it needs square brackets. Hence, do not enable the switch as
shown in the image below.

Add Custom Attributes

Add Attribute

2. Asingle element can support many attributes and it is not feasible to add each attribute.
Therefore, there will be some attributes, which will not be available inside the tool user can add
such attributes using this custom attribute.

Note: When user add attributes to the Non-JET components, some attributes goes inside attr
attribute. Refer https://knockoutjs.com/documentation/attr-binding.html

In that case, Attribute Name will be attr and Attribute value will be actual attribute user want to add.

User Interface Workbench 110

https://knockoutjs.com/documentation/attr-binding.html

Available Attributes

Assume user want to add id attribute to an Image, i.e. html tag. In this case, id attribute goes
inside attr attribute. Therefore, Attribute Name will be attr and Attribute value will be id: fb_image as
shown in the image below.

Add Custom Attributes

Add Attribute

11.9 Conditional Field:

Description: This attribute is used to display an element only if given condition gets satisfied.

Components to accept the input: switch, select box, and input text.

Conditional Field

When user enable the switch, it will display a select box and an input text as shown in the image
below.

()

User Interface Workbench 111

Available Attributes

1. Controlling property: This select box lists name of the all the elements which user have added. If
user want to display element based on the value of a different element, then user can use all these
elements available in the select box to write a condition.

2. Conditional Expression: This field accepts the condition that needs to be satisfied.

Example: User have a form to transfer money from account to another account. That form has
select box to select a payee, account input to select an account from which user want to transfer
the money, input field which accepts the amount and radio buttons which accepts the date i.e. when
to transfer the money as shown in the image.

Transfer From

OO 0067 v

Balance : £995,824.11

Amount

View Limits

Transfer When

@ Now

This radio button (Transfer when) has two options.

a. Now : If user wants to transfer the money today only, he will select this option.
b. Later: If user wants to transfer the money on a different date, he will select this option.

Now when user selects “Later” option, there should be a date picker to accept the date as shown in
the image below.

User Interface Workbench 112

Available Attributes

Payee

Please Select v

Transfer From

X000 0067 v

Balance : £995,824.11

Amount

View Limits
Transfer When

Now ® Later

ransfer Date

In this case user have to display the date picker “Transfer date”, if user selects “Later” option.
This is condition.

Usage:
Assuming user has already added the radio buttons, and amount field.

Now when user will add “Transfer date” date picker, user will enable the conditional field switch. It
will display a select box (Controlling property) and input text (Conditional Expression).

3. Controlling property: This select box will list name of all the elements. Therefore, it will display
name of radio buttons (“Transfer when”)and amount(“Amount”) field as shown in the image below.

«©

Transfer When
Amount

Please use x1,x2 as placeholder for
selected controling field to write

If date picker based on the value of radio button is to be displayed, user will select the “Transfer
When”.

User Interface Workbench 113

Available Attributes

4. Conditional Expression: User will have to add the condition. There is a help text written just below
this input field.

“Please use x1, x2 as placeholder for selected controlling field to write expression”.

It implies when the condition is written, the name of an element that user have selected from
Controlling Property, instead refer them as x1,x2 and on is not mentioned.

Therefore, in this example, user will write “Transfer When” as x1.
condition will be x1 === “Later”.

Write this condition in the input field as shown in the image below.

«

Transfer When x

x1 === "Later]

Please use x1,x2 as placeholder for

d controling field to write

Note: Sometimes, condition is a combination of multiple elements. In that case, user can select
multiple elements from Controlling property. For example, user wants to display the date picker, only
if user selects later and amount entered is greater than 100INR.Then user can select both “Transfer

when” and “Amount”. And condition will be x1==="Later” && x2 > 100 as shown in the image below.
| @)
ling Prope
Transfer When x

Amount x

User Interface Workbench 114

Available Attributes

5. Condition cannot always be depend on element’s value that user have added. For example, user
has only one condition, display the date picker in case of large screen only. This condition is not
based on any element that user have added. In such cases user can directly write condition in
Conditional expression field. As there is no controlling property, there will be no x1, x2 placeholder.

Condition will be “$baseModel.large()” ($baseModel.large() returns true if it is large screen) as
shown in the image below.

x1,x2 as placeholder for

ted controling field to write

6. With controlling properties, user can add me different condition al. For example, user has a
condition, which is a combination of all the three conditions, which are discussed above.

condition will be x1==="Later” && x2 > 100 && $baseModel.large() as shown in the image below.

\A
\

Transfer When x

(¥2)
)

x1==="Later” && x2 > 100 && S$basel

Qo

v

ise x1,x2 as placeholder for

User Interface Workbench 115

Available Attributes

11.10Grid:

The grid section is used to design grid structure supported by Oracle JET. Refer
http://jet.us.oracle.com/jetCookbook.html?component=grid&demo=gridresponsive to learn how to use
grid structure.

Osmall dasses [medium dasses M iarge classes M xarge classes
Usage: By default tools support Oracle JET oj-form-layout (refer

http://jet.us.oracle.com/jetCookbook.html?component=ojFormLayout&demo=formverticalofl).

The default layout will be the one which user selected on Layout Selection page (refer Layout
Selection Page). But there are limitations of oj-form-layout. Not every element is supported by oj-
form-layout and not every structure can be created by oj-form-layout, hence grid layout can be used
to resolve this problem. Use of grid is pretty simple.

Creating grid Layout: Select grid option to enable grid layout.
a. Flex:

This property provide new flex to the selected element. And the current element will be wrapped as
flex-item in this Flex. But in case user does not select this option and previous element has Flex true
than this element will be added as flex item in the previous element. It is okay if this all seems little
complex, we will clear this in upcoming examples.

b. Flex Item Label Class:

In case of form element like input box, select box, etc. this property is used to decide the width and
position of label. In case form element does not have label or user does not want to display the label,
keep the switch off.

c. Flexitem label Class:

This field is used to get configuration for width and position of current element.
Examples:

Case:

a) Grid: true, flex : true; Flex item label class: true,

Label Class: ‘0j-Ig-3 0j-md-4 0j-sm-12’, Flex Iltem Class: ‘0j-Ig-4 0j-md-5 0j-sm-12’

* input 1 text

b) Grid: true, flex: false, previous element flex: true, Flex item label class: true

Label Class: ‘0j-lg-2 0j-md-4 o0j-sm-12’, Flex Item Class: ‘0j-Ig-3 0j-md-5 o0j-sm-12’

User Interface Workbench 116

http://jet.us.oracle.com/jetCookbook.html?component=grid&demo=gridresponsive
http://jet.us.oracle.com/jetCookbook.html?component=ojFormLayout&demo=formverticalofl

Available Attributes

% Prey t Current Element
% arow 1 text PreviousElement Brow1 text ! '

c) Grid: true, flex: true, Flex item label class: false

Flex ltem Class: ‘0j-lg-3 0j-md-5 oj-sm-12’

text

Open Editor of hook function: Whatever is written inside this code editor goes inside the function.

Function has three parts:
function function_name(function_parameters) {

Function_body

1. function_name: Function name will be generated by the tool
2. function_parameters:

a. Incase of JET components, which support value attribute for example, oj-input-text, oj-select-
one etc. function parameter will be newValue as shown in the image below. newValue stores
a new value of the field. To know more about JET components refer
http://jet.us.oracle.com/6.1.0/jetCookbook.html.

G

1 //write code herej

- cancel

b. In case of JET components, which do not support value attribute, for example, oj-button, oj-
menu, oj-file-picker etc. function parameter will be event and data as shown in the image
below.

User Interface Workbench 117

http://jet.us.oracle.com/6.1.0/jetCookbook.html

—

1 frwrite code here;

Available Attributes

c. Incase of Non JET components i.e. pure html components, for example, anchor tag function

parameters will be data and event as shown in the image below.

Geovend

1 I-"/wr-ite code here;

1. function_body: User can write own code inside this body. If user select any REST
API from REST API Chain select box, it will have some auto-generated code.

Otherwise, it will be an empty body.

User Interface Workbench

118

There are two buttons.

1. Save Button: It will save all the code user has written.

Available Attributes

2. Cancel Button: It will close the code editor without saving anything user has written after

opening the code editor.

11.11Select anchor type:
Description: This attribute is used to determine the type of anchor tag.
Components to accept the input: Select box

This select box has three options as shown in the image below.

1. Text
2. lcon

3. Image

Select anchor type

1. Text: This option is used for simple text. When user select “Text” option, it shows “Value” select

box as shown in the image below.

Select anchor type

Text

fetched from ResourceBundle

Please use value option if anchor text is not

User Interface Workbench

119

Available Attributes

2. Icon: This option is used for icons. When user select “lcon” option, it shows an input box named as

“Icon class Name” as shown in the image below. This input text accepts an icon class.

Select anchor type

lcon

Icon Class Name

Image: This option is used for image. When user select “Image” option, it shows an input box

named as “Enter Image Path” as shown in the image below. This input text accepts image path
where it is located.

Select anchor type

Image

Enter Image Path

Example: Now anchor tag can be used with simple text, icon or image.

1. Text: User have a simple text “Forgot User name” that user want to use as a link, as shown in the
image below highlighted in red oval.

Forgot Password

User Interface Workbench 120

Available Attributes

Usage: In this type, select this option as shown in the image below.

Select anchor type
Text

Please use value option if anchor text is not
fetched from ResourceBundle

As user can see in above image, there is small information text, “Please use value option if anchor
text is not fetched from ResourceBundle”.

It means, if text is not a simple string, i.e. it is fetched from the server or stored in variable then user
can use value option available just below the text.

To understand value attribute refer value attribute section.

In this example, “Forgot User name” it is a simple string, do not select anything from “Value” select
box.

2. Icon: User have an icon (>) that user want to use as a link, as shown in the image below
highlighted in red oval.

Current & Savings £1,378,138.11 O

I Term Deposits £55,645.44 >

Recurring Deposits £0.00 b

Usage: In this type, select this option as shown in the image below.
It will display an input box to enter the class name for an icon.

For this icon, class name is “icons icon-arrow-right”, enter it in the input box as shown in the image
below.

Select anchor type

lcon

Icon Class Name

icons icon-arrow-right

User Interface Workbench 121

Available Attributes

3. Image: User have an image that user want to use as a link, as shown in the image below
highlighted in red oval.

Payments

Usage: In this type, select this option as shown in the image below.

It will display an input box to enter the path for an image.

For this image, path is “dashboard/quick-access/ transfer-money”, enter it in the input box as shown in the
image below.

Note: Use single quotes if path is of type string.

Select anchor type

Image

Enter Image Path

‘dashboard/quick-access/ transfer-money.svg

If “dashboard/quick-access” is string but “transfer-money” is stored in image variable.
Then path will be ‘dashboard/quick-access’ + image

Select anchor type
Image

Enter Image Path

'dashboard/quick-access' + jmage

User Interface Workbench 122

11.12Add formatter:

Available Attributes

Description: This attribute is used to add formatter to format a date, currency or number.

Components to accept the input: Switch, Select box and Input box

Add Formatter

When user enables this switch, it will display a select box named as “Select Formatter type”.

Format Date

Format Currency

Format Number

This select box has three options:

a) Format Date: To format a date

Add Formatter
«
Select Formatter Type

Format Date

b) Format Currency: To format currency as per the standard format for a particular currency.

Select Formatter Type

Format Currency

Enter Currency Variable

User Interface Workbench

123

Available Attributes

When user selects this option, it will display an input box named as “Enter Currency Variable”. Add
variable name which has currency value.

c) Format Number: To format a number into percent value.
When user selects this option, it will display three input boxes as shown in the image below

Add Formatte

Select Formatter Type

Format Number

Min Fraction Digit

Max Fraction Digit

a) Style: This field is used to specify the style which should be used for formatting the number, like
percent or decimal

b) Min Fraction Digit: This field is used to specify the minimum digits permissible after the decimal.

¢) Max Fraction Digit: This field is used to specify the maximum digits permissible after the decimal.

Example:

1) Format Date: User has a date like “2017-10-03T19:43:45.695Z”. And user wants to format it
using dateTimeStampFormat, which will be “04 Oct 2017 01:13:45 AM".

Usage: Enable the switch, and select type “Format Date”

Add Formatter

«

Select Formatter Type

Format Date

2) Format Currency: User has an amount “2,502.25” and user want to format it using currency
“GBP”, which will be “£2,502.25".

User Interface Workbench 124

Available Attributes

Usage: Enable the switch.

Here what user write in “Enter Currency Variable” input box depends on what user select in
value attribute. Refer value attribute section

If user selects “Observable variable / Inside Table/ Inside List/TreeView”, then user will write
variable name in which this currency has been stored.

Assume variable name is “tempCurrency’. Its value is “GBP”.

Add Formatte
«©
Select Formatter Type

Format Currency

Enter Currency \

tempCurrency

If user select “Rest Properties”, then user will write “currency” word as shown in the image
below.

Select Formatter Type

Format Currency

Enter Currency Variable

currency

3) Format Number: User has a number “63.2512” and want to format it with percentage.
Minimum fraction digit is 1, and maximum is 2. It will be 63.25%.
Usage: Enable the switch, select “Format Number” type. Enter style as percent (do not use
single quotes), and fractions digits as shown in the image below.

User Interface Workbench 125

Available Attributes

Add Formatter
«

Select Formatter Type
Format Number

Style

percent

Min Fraction Digit

1

Max Fraction Digit

2

User Interface Workbench 126

Available Attributes

11.13Select Size:

Description: This attribute is used to specify the size of the avatar.
Components to accept the input: Select box

Select Size

(%)
(%)

78 ~

X3

SM

MD

LG

XL

This select box has seven options:
XXS : Double extra small

XS: Extra small

SM: Small

MD: Medium

LG: Large

XL: Extra large

N o o~ w P

XXL: Double extra large

Example: User has an avatar, and user wants to specify the size as extra small. To know more about
avatar size refer http://jet.us.oracle.com/6.1.0/jetCookbook.htmI?component=avatar&demo=basic

Usage: Select XS option as shown in the image below.

Select Size

X= oy

User Interface Workbench 127

http://jet.us.oracle.com/6.1.0/jetCookbook.html?component=avatar&demo=basic

Available Attributes

11.14Enter Image Path:

Description: This attribute is used to specify the path for the image of the avatar. Image will be
rendered as a background image.

Components to accept the input: Input Text

Enter Image Path

Usage: Enter path “composites/avatar-image.jpg” in an input box as shown in the image below.

Note: Use single quotes if path is of type string

Enter Image Path

composites/avatar-image.jpg’

User Interface Workbench 128

Available Attributes

11.15 Enter Initials:

Description: This attribute is used to specify the initials of the avatar. It will only be displayed if the
source (src) attribute i.e. path of an image is null or not specified.

Components to accept the input: Input Text

Enter Initials

Enter initials

Example: User wants the initials as “AB” in avatar.

Usage: Enter the initials “AB” in an input box as shown in the image below.

Note: Use single quotes if initials are of type string.

Enter Initials

‘AR

11.16Select Type:

Description: This attribute is used to specify whether to allow single or multiple option selection. By
default, it will be single selection.

Components to accept the input: Buttonset

For Select:

Select Type

For ComboBox:

Select Type

- Combobox Many

User Interface Workbench 129

There are two types of button available.
1. Select/ComboBox One : For single select
2. Select/ComboBox Many : For multi select

By default, “Select/ComboBox One” will be selected.

Example:

1. For Select Component:

User wants multi select drop down as shown in the image below.

Select Many

Chrome * | | Safari %

Internet Explorer
Firefox

Opera

Usage: Select type “Select Many” as shown in the image below.

Select Type

2. For ComboBox Component:

User wants multi select combobox as shown in the image below.

Combobox Many

Chrome X | Firefox ¥ || UC X

Internet Explorer
Opera

Safari

Usage: Select type “ComboBox Many” as shown in the image below.

Select Type

User Interface Workbench

Available Attributes

130

Available Attributes

11.17 Selection Mode:

Description: This attribute is used to specify whether to allow single or multiple file selection.

Components to accept the input: Select box

Selection Mode

Single

Multiple

This selection box has two options:
1. Single
2. Multiple

Example: User wants to allow multiple file selection as shown in the image below highlighted in red
oval.

Custom file picker

1, Upload

Selected files:{"voicemail.wav","header.txt"]

Usage: Select type “Multiple” as shown in the image below.

Selection Mode

Multiple

User Interface Workbench 131

Available Attributes

11.18Enter Allowed File Extensions:

Description: This attribute is used to specify the file extensions that can be uploaded. If not
specified, accept all file types.

Component to accept the input: Input text

m
=
m
3

=
[11]
D
m
=
M
=
w
(2]

m
-

Enter Allowed File
Example : ['jpg',".png']

In the image above, there is information text written under the input text. Example['.jpg’, ‘.png’]

All extensions must be in an array, separated by a comma (,), surrounded by single quotes(‘* ‘) and
start with full stop (.).

Example: User wants to accept only the following file extension.

" "

‘jpg”, “png’,
Usage: array will be [.jpg’,’.png’,’.gif]

gif’

Enter this array in an input box as shown in the image below.

['ipg’."png’. gif] |
Example : [jpg’.' png’]

11.19Image source:
Description: This attribute is used to specify the path or source of an image.

Components to accept the input: Input Text

Example: User wants to add an image, available at “composites/avatar-image.jpg” location.

Usage: Enter this path “composites/avatar-image.jpg” in the input text as shown in the image below.

Note: Use single quotes if path is of type string.

User Interface Workbench 132

Available Attributes

Image Source

Fomposites/avatar-image jpg’

If path is stored in a variable, write that variable name as shown in the image below. Example
variable name is “image”.

Image Source

image|

11.20Enter Minimum Length:

Description: This attribute is used to specify the minimum allowed value. This number is used in the
range validator; if the value is less than the minimum value then the range validator flags an error to
the user. The down arrow is disabled when the minimum value is reached.

Component to accept the input: Input Text

Enter Minimun Length

Example: User wants to set the minimum value as 5 as shown in the image below.

Enter number

4 N

© The number is too low.

The number must be greater
than or equal to 5.

Usage: Enter 5 in the input text as shown in the image below.

Note: Do not write number in quotes.

Enter Minimun Length

5

User Interface Workbench 133

Available Attributes

11.21Enter Maximum Length:

Description: This attribute is used to specify the maximum allowed value. This number is used in the
range validator; if the value is greater than the maximum value then the range validator flags an error
to the user. The up arrow is disabled when the maximum value is reached.

Component to accept the input: Input Text

Enter Maximum Length

Example: User wants to set the maximum value as 15 as shown in the image below.

Enter number

© The number is too high.

The number must be less than or
equal to 15.

Usage: Enter 15 in the input text as shown in the image below.

Note: Do not write number in quotes.

Enter Maximum Length

15

11.22Enter Step:

Description: This attribute is used to specify the size of the step to take when spinning via buttons.
Step must be a number greater than 0, otherwise an exception is thrown. It defaults to 1. To
understand more about step attribute refer
http://jet.us.oracle.com/6.1.0/jsdocs/oj.ojinputNumber.html#step

Component to accept the input: Input Text

Enter Step

Example: User wants to set the step value as 2.

User Interface Workbench 134

http://jet.us.oracle.com/6.1.0/jsdocs/oj.ojInputNumber.html#step

Available Attributes

Enter number

5

Value of input number is 5. If user clicks the up arrow, value will increment by 2 and it will be 7 as
shown in the image below.

Enter number

7

Now value of input number is 7. If user clicks the down arrow, value will decrement by 2 and it will be
5 as shown in the image below.

Enter number

5

Usage: Enter 2 in the input text as shown in the image below.

Note: Do not write number in quotes.

Enter Step

11.23Source variable:

Description: This attribute is used to specify the data source for the list/table/tree. A Data source is
a variable, which stores the data that needs to be displayed on the screen in the form of a
list/table/tree.

Input Text
Source Variable
[Enter S e Variable

Example: User has stored data in a variable named as “deptArray”.

Note: In case of Tree element, this variable must be in JN format.

Usage: Enter this variable in an input box as shown in the image below.

User Interface Workbench 135

Available Attributes

11.24 Id attribute:

Description: This attribute is used to specify the column name that contains the unique key from the
data source of the list/table. A Unique key i.e. a column is used to identify an item of list/table
uniquely.

Component to accept the input: Input Text

Id Attribute

Example: User has a data source deptArray, which has the following data.
Var deptArray= [

{Departmentld: 10, DepartmentName: '‘Administration’, Locationld: 200},
{Departmentld: 20, DepartmentName: ‘Marketing', Locationld: 200},
{Departmentld: 30, DepartmentName: 'Purchasing’, Locationld: 200}];

Usage: In this example, the column, which is a unique key, is “Departmentld”. Because value of every
“Departmentld” is unique.

Enter this column name in an input box as shown in the image below.

d Attribute

Departmentld

11.25 Renderer ID:

Description: This attribute is used to specify the id of a renderer that user have created for list/tree.
To understand what is renderer and how to create it refer (link to renderer)

Components to accept the input: Input text

Renderer ID

Example: User has created a renderer with the id as “item_template”.

Usage: Enter “item_template” in an input box as shown in the image below.

Renderer ID

item_template

User Interface Workbench 136

Available Attributes

11.26 Pagination:
Description: This attribute is used to apply pagination to list/table.

Components to accept the input: Switch

Pagination

When user enables the switch, it will display an input text and accordion as shown in the image
below.

Pagination

«

Page Size

Page Options

1) Page Size: This is used to specify the page size i.e. how many records should be visible to the
user on the first page.

For example, user has given page size as 3, only first three records will be visible to the user as
shown in the image below.

Department Id Department Name
10015 ADFPM 1001 neverending
556 BB
10 Administration
Page 1 of2 (1-3of5items) 2 >

2) Page Options: When user expands this accordion, it shows multiple page options as shown in
the image below.

User Interface Workbench 137

Available Attributes

Pagination
«

Page Size

3) Layout: This option is used to specify how the paging navigation controls should be displayed.

Page Options

Al

It has following six options:
a) All: Display all controls

Page 1 of5 (1-10 of 45 items) 2 3 4 5 > X

b) Auto: The Paging Control decides which controls to display.

Page 1 of5 (1-10of 45 items) 2 3 4 5 > b

c) Input: Display the page input control

User Interface Workbench 138

Available Attributes

-
o
!
o

—
[}
¥

[y

d) Navigation: Display the navigation arrows

e) Pages: Display the page links

2345

f) RangeText: Display the page range text control

(1-10 of 45 items)

1) Maximum PageLinks: This option is used to give the maximum number of page links to display.

Max PageLinks

— o AY FAaneg f 5

An ellipsis "..." will be displayed for pages, which exceed the maximum number as shown in the
image below. maxPagelLinks must be greater than 4.

Page 1 of13 (1-4 of 49 items) 2 3 4 5@13

User Interface Workbench 139

2) Orientation: This option is used to give the orientation of the page links.

Qrientation

Select Orientation

Horizontal

Vertical

It has following options:

a) Horizontal: This option is used to align the page links horizontally.

Department Id Department Name
10015 ADFPM 1001 neverending
556 BB
10 Administration
Page 1 of 1 (1-3 of 3 items)

b) Vertical: This option is used to align the page links vertically.

Example: User wants a pagination with following options.
Page size: 4

Layout : ‘AlIl

Max Page Links: “5”

Orientation: “Horizontal”

Department Id Department Name

10015 ADFPM 1001 neverending

556 BB

10 Administration

20 Marketing

Page 1 of12 (1-4of 45 items) 2 3 4 5 .12 >

Location Id

200

200

200

200

Usage: Enter all the options as shown in the image below.

User Interface Workbench

Available Attributes

140

Available Attributes

Pagination

«

Page Size
4
Page Options
Layout
A

Max PageLinks

en

Orientation

Horizontal

11.27 Indexer:

Description: The JET Indexer is usually associated with a scrollable JET ListView. It provides a list
of sections that corresponds to group headers in ListView. When a section is selected, the
corresponding group header will be scroll to the top of the ListView.

Components to accept the input: Switch

Indexer

When user enables this switch, it will display an input box as shown in the image below.

e

Indexer Key

Indexer key: This field accepts the key of the data on which grouping is based on.

Example: User wants a list with indexer and user want to group all list items based on the surname as
shown in the image below.

User Interface Workbench 141

Available Attributes

A

Mozhe Atkinson
Simon Austin

B

Hermann Baer
Shelli Baida
Annett Barnes
Amy Bartlet
Laura Bissot
Bart Buckler W
Andrew Bugsy Y

C -

Usage: Assume user have following data source of the list.

datasource= [{id: "1", first_name: ", last_name: "Dunphy"},
{id: "100", first_name: "Mozhe", last_name: "Atkinn"},

{id: "101", first_name: "Simon", last_name: "Austin"},

{id: "200", first_name: "Hermann", last_name: "Baer"},

{id: "201", first_name: "Shelli", last_name: "Baida'},

{id: "2300", first_name: "Eleni", last_name: "Zlotkey"}]
Here surname is stored in last_name key.

Enable the switch and enter the indexer key as “last_ name” as shown in the image below.

Ind

M

Indexe

Key

last_name]|

User Interface Workbench 142

Available Attributes

11.28 ID:

Description: This attribute is used to specify the id attribute for menu. This id attribute is used to
launch the menu.

Components to accept the input: Input text

[nter 1D

Example: User wants to give the id as “actionMenu”.

Usage: Enter “actionMenu” in an input box as shown in the image below.

Note: Use single quotes if it is a simple string.

D

actionMenu’

If it is a combination of a string and a variable, for example string is “actionMenu” and variable is
“$data.index” then ID will be “ ‘actionMenu’ + $data.index ” as shown in the image below

D

actionMenu' + Sdata.index|

11.29 Enter menu launcher:

Description: This attribute is used to specify the DOM Element, which may or may not be a JET
element that launches the menu. For example anchor tag (<a>) or oj-button.

Components to accept the input: Select box

Enter Menu Launcher

Actions

Actions

Open Menu

This select box lists the name of all clickable elements that user has added in page. For example,
anchor tag and button.

First option “Actions” is a name of the anchor tag and second option “Open Menu” is a name of the
button.

User Interface Workbench 143

Available Attributes

Example: User wants to open menu on the click of an anchor tag “Actions” as shown in the image
below.

Actions

& Foom In it
N Zoom Out

& Save

Usage: Select the “Actions” anchor tag option as shown in the image below.

Enter Menu Launcher

Actions

11.30Columns:

Description: This attribute is used to add the columns of a table.

Component to accept the input: Accordion, Buttonset and Input text

» Columns

When user expands the “Columns” accordion, it shows a buttonset, with custom and external options
as shown in the image below.

4 Columns

ype

Variable Name

These are two ways to add columns of the table.

1) Custom: When user clicks this option, it shows three input text as shown in the image below.

User Interface Workbench 144

4 Columns

- Ex{erﬂal
Enter Field

Enter HeaderText

Enter Class

(_ Add Columns

Available Attributes

2) Enter Field: This field is used to specify the data field the column refers to i.e. the data of the

column.

3) Enter HeaderText: This field is used to specify the text to display in the header of the column i.e.

name of the column

4) Enter Class: This field is used to specify the CSS class to apply to the column cells.

User can add more columns using “Add Columns” link highlighted in green oval in the above image.

User can delete the columns using an icon highlighted in red oval in the above image.

5) External: By default, this option will be selected. When user click this option, it shows an input

text as shown in the image below.

4 Columns

Variable Name

User Interface Workbench

145

Available Attributes

6) Variable name: This accepts the variable name in which columns information is stored.

Example:
1) Custom: User has a table, which display s Department name and manager ID as shown in the
image below.
Department Name Manager Id
ADFPM 1001 neverending 300
BB 300
Administration 300
Marketing 300

Data source of the table is as following.

var deptArray = [

{DepartmentName: 'ADFPM 1001 neverending',Managerld: 300},
{DepartmentName: 'BB', Managerld: 300},

{DepartmentName: '‘Administration’, Managerld: 300},

{DepartmentName: 'Marketing', , Managerld: 300];

a) For the first column i.e. “Department Name”
= Name of the column is Department Name, headerText is “Department Name”.
= Data of the column is stored in the field DepartmentName (refer the deptArray), field
is “DepartmentName”.
* No class is needed.

Usage: Enter all these information as shown in the image below.

4 Columns

Enter Field

2\

I
\Z

DepartmentName

Department Name

Enter Class

Add Columns

User Interface Workbench 146

Available Attributes

b) For the second column i.e. “Manager ID”.

e Name of the column is Manager ID, headerText is “Manager ID”.

e Data of the column is stored in the field Managerld (refer the deptArray), field is
“Managerld”.

e Classis “0j-sm-12”

Usage: To add this column, click “Add columns”. It will add one more column and add all the
details as shown in the image below.

Enter Ciald =
Enter Field)

DepartmentName
Enter HeaderText

Department Name

Enter Class

)
\z

Enter Field (x

€

Managerld

Enter HeaderText

Manager Id

Enter Class

0j-5m-12

2) External: If user wants to display the same table used in above example.
User wants to make first column resizable, which can be done by adding resizable: enabled
configuration to the column. But in custom type there is no option to add this configuration
because it accepts only headerText, field and class.
In such cases, where column has more configuration, use “External” type.

Create one variable “columnsArray”. Add two objects for two columns. In those objects, user can
add any configuration needed for the column.
columnsArray = [{"headerText": "Department Name",

"field": "DepartmentName”,

"resizable": "enabled"},

{"headerText": "Manager Id",

"field": "Managerld",

"class": "0j-sm-2"}]

As user can see for the first column, “Department Name”, resizable: enabled configuration is
added.

User Interface Workbench 147

Available Attributes

Usage: Enter this variable name in an input box as shown in the image below.

colu

4 Columns

Variable Name

mnsArmray

11.31 Row ren

derer:

Description: This attribute is used to specify the id of a renderer for table. This is only valid if
user have added any row renderer for the table.

If user has a simple data to display i.e. every column of the table, display some text. In that case,
user do not need any row renderer. Refer the image below.

Date

06 Sep 2018

06 Sep 2018

06 Sep 2018

06 Sep 2018

Description

AT30028200778 NEW DEPOSIT

AT30028200745 NEW DEPOSIT

Payments and Collections Transaction

code

Payments and Collections Transaction

code

Reference No

AT3DEBK1824915AE

AT3DEBK1824915AA

AT30UPA18249B0QN

AT30UPA18249B0QL

Amount

£121.00Dr

£227.00Dr

£550.00 Dr

£550.00 Dr

Balance

£6,160.45

£6,281.45

£6,502.45

£7,052.45

However, in the table, input fields such as input text, checkboxes or anchor tag have to be
added. In that case, user needs a row renderer. For example in the following image, there is
checkbox highlighted in red oval and input text highlighted in green oval inside the table. To

understand what is renderer and how to create it refer renderer section.

D

Invoice List

Counterparty Name & ID

OBDXDEV COUNTERPARTY

OBDXDEV COUNTERPARTY

OBDXDEV COUNTERPARTY

OBDXDEV COUNTERPARTY

Program Name and ID

BPT

BFT

BFT

BFT

Invoice No

BULKFUVO126

BULKFUV0127

BULKFUVO124

BULKFUVO130

Invoice Amount

£100,000.00

£100,000.00

£100,000.00

£100,000.00

Due Date

21 May 2019

21 May 2019

21 May 2019

21 May 2019

Components to accept the input: Switch, Input box

User Interface Workbench

148

Row renderer
«
Row Template

Example: User has created a renderer with the id as “item_template”.

Usage: Enter “item_template” in an input box as shown in the image below.

Row

«©

Row

item_template

renderer

11.32Aria label

Description: This attribute is used to specify the aria label of the tag.

Components to accept the input: Input text

Aria Labe

Example: User wants aria label as “Accounts”.

Usage: Enter “Accounts” in an input box as shown in the image below.

Aria Labe

Accounts|

User Interface Workbench

Available Attributes

When user enables the switch, it shows an input box named as “Row template”.

149

11.33Tag type:
Description: This attribute is used to specify the type of tag.

Components to accept the input: Select box

Select Tag Type
Div
Span

Label

This select box has five options:

Available Attributes

1. Div: Itis a block-level element. A block-level element always starts on a new line and takes

up the full width available.

2. Span: Itis an inline element. An inline element does not start on a new line and only takes up

as much width as necessary.

3. Label: Itis a label tag of HTML. This element is used to associate a text label with a form

input field

4. H3:1tis h3 tag of HTML. It represents a level 3 heading in an HTML.

As per requirement, select the type.

Example: User wants do display “Please do not refresh or hit back” text. And user wants other

text “Waiting” on the next line as shown in the image below.

)

Waiting. ..

ase do not refresh or hit back

Usage: Now in this example, our first text should occupy the whole line and second text should
start on the next line. As Div is a block element, it satisfies the requirement. When user adds
“Waiting” text and selects Div type as shown in the image below. “Waiting” text will start on a

new line.

User Interface Workbench

150

Available Attributes

Div

11.34Binding source:

Description: This attribute is used to specify the use of the tag. For example, it can be used to
display text, or some value or an icon etc.

Components to accept the input: Select box

Binding Source

Select binding Type
NLS

Bindings

Icon

After Renderer

This select box has five options:
1) NLS: This option is used to display simple text. When user selects this option it will display
an input box named as “Label” as shown in the image below.

Binding Source

NLS

Label

2) Bindings: This option is used to display value of some variable. When user selects this
option it will display a select box named as “Value” as shown in the image below. To know

more about value refer Value attribute section.

User Interface Workbench 151

Available Attributes

Binding Source

Bindings

<
=
=
m

3) lcon: This option is used to display an icon. When user selects this option, it will display an
input box named as “Icon class name” as shown in the image below.

Binding Source

lcon

lcon Class Name

o

4) After Renderer: This option is used to call a function after the DOM (Document Object Model)
has rendered the specific HTML code. When user selects this option, it will display an input
box named as “Enter Function Name” as shown in the image below. To know more about this
refer https://knockoutjs.com/documentation/template-binding.html

Binding Source

After Renderer

Enter Funtion Nam

m

Example:

1) User wants to display simple text “Welcome” as shown in the image below.

Welcom

S

Usage: As this is a simple text coming from Resource Bundle, select Type “NLS”.

Enter “Welcome” text in the “Label” input box as shown in the image below.

User Interface Workbench 152

https://knockoutjs.com/documentation/template-binding.html

Available Attributes

Binding Source
NLS

Label

Welcome|

2) User wants to display “Welcome” which is stored in a variable.

Welcom

S

Usage: Assume variable name is “tempVariable”. As this is stored in a variable and not coming from
Resource Bundle, select type “Binding Source”.

How to add a variable using Value attribute refer Value attribute section.

Binding Source

Bindings

Value

Observable Variable

Variable Name

tempVariable

3) User wants to display the user icon and password icon, highlighted in red oval in the image
below.

Usage: User icon class is “icons icon-user”.

Select type “Icon”

Enter the user icon class “icons icon-user” in the “lcon class name” input box as shown in the image
below.

User Interface Workbench 153

Available Attributes

Binding Source
Icon
Icon Class Name

icons icon-user|

4) User wants to execute some function once the specific elements are rendered on the screen.

Usage: Assume function name is "display Success”.
Select type “After renderer”

Enter function name “display Success” in the “Enter Function Name” input box as shown in the image
below.

Binding Source

After Renderer

Enter Funtion Mame

displaySuccess

11.35Enter rows

Description: This attribute is used to specify the number of visible text lines in the text area. It can be
used to give specific height to the text area.

Components to accept the input: Input text

Enter Rows

1ter Rows

Example: User want to add text area with 3 rows as shown in the image below.

User Interface Workbench 154

Available Attributes

first row
second row
third row

In the image above, only first three rows are visible to the user because the number of rows are 3.
There is a scroll for other rows as shown in the image below.

e L™ R

third row
fourth row
fifth roM

Usage: Enter 3 in the input text as shown in the image below.

]

11.36Selected step:

Description: This attribute is used to specify the ID of the current selected step. Default is the first
step in the steps array.

Components to accept the input: Input text

Selected Step

1]

Example: User wants to set step 2 as a selected step as shown in the image below.

© o ® O ®

Step One Step Two Step Three Step Four Step Five

Usage: Assume step array has following data:
Step_array = [{label:'Step One', id:'stp1'},
{label:'Step Two', id:'stp2},

User Interface Workbench 155

Available Attributes

{label:'Step Three', id:'stp3'},
{label:'Step Four', id:'stp41,
{label:'Step Five', id:'stp5'}];

Therefore, ID of second step is “stp2”. Enter this id in the input text as shown in the image below.

I¥s]
[y1]
M
(]
—
5]
]
I¥s]
(45}

stp2

User Interface Workbench 156

Available Attributes

11.37REST API Chain and Hook Function

e REST API Chain: To understand what is chaining refer REST API Configuration section. This
select box lists all the REST API chaining that user have created in step four i.e. REST API
Configuration. From this select box, user can select REST API chain that user wants to fire when

an element is clicked.

faccessPointGroup post vi1

faccounts/cards/credit/{creditCardid}
frepayment delete v1

faccessPoint/{accessPointld} get v1

e Hook function: There is a button named as “Open Editor”. When user clicks this button, it will
open a code editor as shown in the below image. In this editor, user can write the code user
wants to execute when the value of an element is changed.

To understand more about editor refer Open Editor of hook function section

1 [rurite code here;

Example:

1. User want to give an option to use a form as a template. It has an input text to accept the
template name as shown in the image below. And it has an anchor tag that checks for the
availability of the name entered by the user highlighted in a green oval as shown in the image

below.

User Interface Workbench 157

Available Attributes

Check Availability

In this example, user needs to fire a rest to check the availability of the name.
Usage:

Select the REST API, user needs to fire when user clicks the Check Availability option as shown in
the image below.

A
m
o
):
=
o

faccessPoint/{accessPointld}
get v1

X

Hook function

If user click the “Open Editor” button, it will open the code editor.

accessPointaccessPointIdgetcall(self.accessPointaccessPointIdgetaccessPointId()).
then(fun(tiﬂn response)

T

// result for get : "/accessPoint/{accessPointId}"”

self.accessPointaccessPointIdgetVar(response);

B

o~ oo

There is some code already written inside the editor, the tool has generated this code. When user
selects any REST API, the tool generates the required code to execute that REST API. However, in
some cases, there is need to do some additional operation on the data, fetched from the server.
Therefore, for this purpose, there is a support for code editor, to let user write its own code. In such
scenarios, use the response (highlighted in red circle in the image above) for further processing.

Whenever user clicks this option, it will execute the block of code written inside the editor.

User Interface Workbench 158

Available Attributes

2. User want to create an invoice. On clicking Create New Invoice button, navigate should be to
the form of creating an invoice.

1. Online Invoice Creation

Create Invoice on the go and View instantly

Create Mew Invoice

Usage: In this example user do not need to fire any REST API, user will not select any REST API.

Click the “Open Editor” button, and write code inside the editor as shown in the image below.

1 params.baseModel.registerComponant(“create-invoice™, "invoice");
2
3 params .dashboard .1DEd(DmpDﬂeﬂt["[T‘EatE*iﬂ\.’DiEE”),‘l

Function has two parameters event and data. User can use these parameters in code if required.

Note: As there is no REST API selected, there will be no auto-generated code.

User Interface Workbench 159

Available Attributes

11.38Select Type of Container

New Component »

Available Components X o) @ o) (s Container X
» Forms Folder Creation REST AP Selection REST API Configuration Design Component Basic
4 Controls

& Button Select Type Of Container

85 Button Set Normal Container

Design Component

B Container Partial
€2 Component Loader Modal Window
4 Framework Components Component header Enter component header Renderer

£2 Account Input
Button Container

@& Amount Input

Validation Tracker ID Validation Tracker ID Accordion
& Bank Look U
e : Collapsible
(@ Help Panel
Component css style
> NavBar ¥ Y Yes -
Advanced
=) Page Section
Available Components | Edit Init Function | More
= Row Control P Layout
Form
» Visualizations -
280
asqsa
ZBeW
Accordion bl
7 2
waw “em

1. Normal Container: This is the most basic type of container which is used to group an element to:
e apply a common style
e repeat a form section on page
e hide and display form section
e apply grid size to a form section
Example:

In the below example, normal container option has been selected. Two elements will be added with a
gap in between them. User can drop any form element inside it.

7
NormalContainer E=ii|

In the below image an input box and date picker are added inside a hormal container.

User Interface Workbench 160

Available Attributes

NormalContainer [E=]|
name @ [%]T_ﬂ
Date of birth =] @ [%]T_ﬂ

2. Partial: Partials are small unit of the page which can be reused.

Design Component

Avallable Components | Edit Init Function | More
Form testPartial
“Bm

Header

Advanced

Layout
Partial

Example:

When user chooses a container type as partial and create a component, an extra file will be created
in partials folder along with other artefacts (refer creating component) at location.
ChannelPath/partials/you_module/label.html.

Generated partials:

User Interface Workbench 161

Available Attributes

» core » channel » partials

""" MName Date mn:u:lxi}ied
€ testPartial.html 07/05/201912:07
¢ test.html 07/05/2019 11:49
& dashboard-netification.html 09,/02/2019 19:23
& footer.html 09/02/2019 19:23

To use it, refer component loader or select type ‘create and load’ to use is at same location where
container is dropped.

Select Type:
e Create: to create the partial.

e Create And Load: to create and load the partial.

3. Modal Window:

Usage: This container type is used to display the layout in overlay window or dialog box.

Example:
My Limits (%4)
Channel @
Internet A

Available Limits

Amount £5.00 to £10,000.00
Count 150
9%

(D Note - Above limits are derived based on your per transaction initiation limits, total available
cumulative limit for the current channel, payee cooling period and payee limits set up by you if any for
initiating current transaction. You may have limits available for initiating this transaction from other
channel, to know more details access - View Limits

User Interface Workbench 162

Available Attributes

4. Renderer
Usage: Renderer are used to design row of Table or ListView.
For reference go to http://jet.us.oracle.com/.

e Container ID: This Id will be mapped to Row Template in case of Table or Renderer Id in
case of ListView (refer Table and ListView Section).

5. Button Container:

Usage: This container is used to display one or more button as the call to action button. Only buttons
can be placed inside this container

Example:

Transfer When

® Now Later
Correspondence Charges

SHARED v

Payment Details

Add Payment Details

Note

80 Characters Left

6. Accordion:

Usage: A vertically stacked element which allows the user to toggle between sections of content is an
accordion. Accordion container is used to create a group of collapsible items. A collapsible container
is dropped inside it. To know about accordion and its use follow the link:

http://jet.us.oracle.com/jetCookbook.html?component=accordion&demo=basicAccordion.

Example:

User Interface Workbench 163

http://jet.us.oracle.com/
http://jet.us.oracle.com/jetCookbook.html?component=accordion&demo=basicAccordion

Available Attributes

» & Header 1

4 Header 3

» Header 4

7. Collapsible:

Usage: Collapsible container can contain any element inside it, which the user uses to toggle
between sections of content. To know more about collapsible visit
http://jet.us.oracle.com/jetCookbook.htmlI?component=collapsible&demo=basicCollapsible.

Note: UX Extensibility Toolkit and Ul Workbench are used interchangeably.

User Interface Workbench 164

http://jet.us.oracle.com/jetCookbook.html?component=collapsible&demo=basicCollapsible

